AMERICAN ASSOCIATION OF ELECTRODIAGNOSTIC MEDICINE
REVIEW: QUANTITATIVE SENSORY TESTING EQUIPMENT AND REPRODUCIBILITY STUDIES

Peter Siao Tick Chong, MD; Didier P. Cros, MD

INTRODUCTION

This review is provided as a service to the membership of the American Association of Electrodiagnostic Medicine (AAEM). This paper discusses quantitative sensory testing (QST) equipment using the following sensory modalities: 1) light touch, 2) vibration, 3) thermal, and 4) pain. First, is a summary of the different QST equipment and the equipments’ specifications as reported in the literature. Second, is a table that summarizes the different reproducibility studies on vibration, thermal, and heat-pain thresholds that have been reported since 1981. Other sensory testing devices such as the current perception test, tactile circumferential discriminator, and two-point aesthesiometer are not included in the table. This review was based on searches of MEDLINE, and references from relevant articles published between 1966 and 2001. The following search terms were used quantitative sensory testing,” “QST,” “sensory threshold,” “thermal threshold,” “temperature sense,” “vibration,” and “vibration threshold.” The search for literature included only articles written in English.

No clinical tests or trials were performed by the AAEM or the authors of this review. Neither the AAEM nor the authors of this report reviewed any product literature regarding the pieces of equipment included in the paper nor did the AAEM review the specific equipment. The information included about the equipment and the opinions expressed regarding the reproducibility of each type of equipment are those of the author(s) of the papers cited. The conclusions are not those of the AAEM or the authors of this review. This paper was not created with the intent that it be used as a basis for reimbursement decisions.

A literature review of QST can be found in *Muscle & Nerve* in the May 2004 issue, volume 29, pages 734-747 or on the *Muscle & Nerve* website at: http://www3.interscience.wiley.com/cgi-bin/fulltext/108066505/HTMLSTART.

EQUIPMENT

Light Touch

von Frey Hairs

In 1898, von Frey introduced this method of measuring pressure perception with horsehair. Semmes and Weinstein utilized a set of nylon monofilaments with varying diameter and stiffness or bending pressures. The monofilaments are attached to rods at right angles. The examiner applies the monofilaments on the skin at a right angle, and pressure on the rod is increased slowly until the monofilament buckles or bends. The examiner then asks the patient whether a sensation of pressure was felt. The length and diameter of the monofilaments are standardized and the pressures required to bend the monofilaments are predictable. This device is now called the Weinstein-Semmes pressure aesthesiometer. The markings on the rod represent the logarithm of 10 times the bowing force in milligrams. The higher number represents a thicker monofilament, which requires a higher pressure to buckle.

CASE III system

This system was developed by Dyck and colleagues to assess cutaneous light touch perception. The apparatus consists of a stylus tip with a diameter of 0.64 mm that is attached to a galvanometer. The stylus tip rests on the skin at a constant load to allow for accommodation. During stimulation, a known force is applied to indent the skin. The tactile stimuli are applied to a matrix of 9 points 1 mm apart in a 3 x 3 array and the threshold is estimated using the forced-choice algorithm. The stimulus intensity is given in 21 levels with forces that range from 2.9 mg to 12,000 mg. A forced-choice response paradigm is used to obtain the threshold at each point. The mean threshold for the nine sites is also calculated. The most recent CASE IV system no longer includes this apparatus because the galvanometer motor became unavailable and vibration perception testing may be used to assess the large myelinated sensory fibers.

Vibration

Bio-thesiometer (Bio-Medical Instruments, Newbury, OH)

This is a hand-held electromagnetic vibrator with a stimulating probe (12-mm diameter) that vibrates at 100 Hz. It has been in use since 1957. The stimulating probe is placed on the site to be tested, usually the big toe or the finger, and it rests on its own weight (300 g).

The intensity of vibration in increased or decreased by changing the voltage to the stimulator. The vibration threshold is determined by the method of limits and expressed on an arbitrary scale in volts. The operator manually increases the applied voltage until the subject feels the vibration. The voltage is then manually decreased until the sensation disappears. Being a hand-held instrument has the following limitations: (1) the movement of the stimulator is in more than one plane; (2) the static load on the probe may affect the amplitude of the vibration; and (3) the rate of increase in stimulation intensity is manually controlled and therefore not constant. Probably the most
important limitation of this device is the effect of tissue dampening on the actual amplitude of vibration. Goldberg and Lindblom showed that the actual vibration amplitude varies depending on tissue consistency of the stimulation site and that different tissues have different damping effects on the vibrator.21

Vibratron (Somedic AB, Sweden)
This instrument is a modification improvement of the Bio-Thesiometer. Instead of using the applied voltage as the measure of stimulus intensity, an accelerometer measures the level of vibration in micrometers. This modification overcomes the problem of varying vibration amplitude secondary to different tissue consistency. The application pressure of this hand-held device on the stimulation site may be held constant with the aid of a load-bearing display. The stimulator generates a sinusoidal vibration at a constant 100-Hz frequency.21 The stimulus intensity or the vibration amplitude is adjusted manually.

CASE IV vibration stimulator
This device is part of the CASE system that was first introduced by Dyck in 1978.14 It is an automated system that includes a personal computer and software. The system generates the stimuli, cues the patient, records the subject’s responses, and determines the sensory threshold according to selected algorithms (WR Medical Electronics Co., Stillwater, MN). Since 1978, the system has undergone modifications of stimulus characteristics, number of stimulus levels, and techniques of finding the sensory threshold. The vibration stimulator is a galvanometer that is mounted on a balance arm to allow the stimulating probe (9 mm diameter) to rest on the base of the nail of the index finger or big toe at a force of 30 grams. The stimulator generates vibration at 125 Hz (previously 250 Hz). The amplitude is controlled by the computer to vary from 0.1 to 576 micrometers in 25 (previously 21 under CASE III) levels or just noticeable difference (JND).22 A cue device informs the subject of the stimuli and the patient responds by pressing on the button of a response box.

Vibratron II (Sensortek Inc., Clifton, NJ)
This device consists of two identical stimulating posts (1.4-cm diameter) and a controller unit. Only one post vibrates at any one time. The vibration frequency is 120 Hz. The amplitude of vibration varies from 0 to 20 “vibration units.” The “vibration units” may be converted to microns of stimulator displacement. The subject is asked to press the digit against each stimulating post for 1 second at a time and identify the probe that is vibrating using the forced-choice protocol. A method of limits protocol has also been used.18,19,20

Vibratory sensory analyzer (Medoc Ltd., Israel)
The stimulating probe is mounted on a balance arm that provides a constant weight of 70 grams. The probe faces up against the pulp of the finger or toe. The contact area is 1.2 cm² and the vibration frequency is 100 Hz.30

Maxivibrometer (Penn State University, University Park, PA)
This device allows sensory loss to be quantized over a wider range. It measures vibration amplitude from 1 to 1100 mm. The diameter of the stimulating probe is 12.5 mm and the stimulating frequency is 60 Hz. The subject lies prone on the examining table and the device is mounted on a tripod that is not connected to the table to prevent transfer of vibrations through the table.34

Thermal
All commercially available thermal stimulators utilize the Peltier principle. The temperature change is made possible by passing a current through two different metals. Cooling occurs at one side of the bimetallic junction while warming occurs on the other side. Kenshalo introduced this method for the study of temperature sense in humans and subhuman species.27

Marstock stimulator (Somedic AB, Sweden)
Fruhsstorfer, Lindblom, and Schmidt described this device in 1976. It is called the Marstock stimulator because of the collaboration between investigators from the two cities of Marburg and Stockholm.15 The Peltier device and a thermocouple are placed in the thermode and circulating water cools the device. The thermode is placed over the palmar aspect of the thenar region or the lateral aspect of the dorsum of the foot. The subject is instructed to press a button as soon as a warm sensation is perceived. The direction of temperature change reverses to cool when the button is pressed. The temperature is measured with a thermocouple and plotted by a pen recorder. The warm-cold difference limen is then measured from the temperature recording. This original method evaluates warm and cool sensation together. It is a quick way to assess temperature sensation. Moreover, hypesthetic and hyperesthetic conditions can be evaluated. Subsequent modifications of this method have been described to measure warm and cool thresholds separately.6,29,36

CASE IV thermal testing probe
This instrument is part of the CASE IV automated system (WR Medical Electronics., Stillwater, MN). In contrast to the thermode in CASE III, this thermode is now water-cooled to allow a faster rate of temperature change. The stimulating surface that comes in contact with the skin is a ceramic sheet (10 cm²) with high conductance. The thermode consists of two thermoelectric units (TEU 1 and TEU 2) and a thermocouple attached to the ceramic sheet. An aluminum block separates the two TEUs. Another aluminum block is mounted on TEU 2 and water circulates around it to dissipate heat. TEU 1 provides the warm or cold temperature ramps and TEU 2 maintains the aluminum block at skin temperature. The patient’s skin temperature is used as the baseline. The thermode’s temperature is maintained by the computer through the
thermode’s temperature ranges from 5ºC to 50ºC, and the stimulus intensity is given in 25 levels or JNDS.

The rate of temperature change is set at 4ºC/s. The maximum temperatures that can be attained are the following: 9ºC x 10 s for cold perception threshold, 45ºC x 10 s for warm perception threshold, and 49ºC x 10 s for heat pain perception.11,22

Glasgow system

This is an automated system used to measure warm and cool thresholds. The original thermode was watercooled,25,26 but a portable system that did not require water cooling became available as the ‘Triple T’ (Thermal Threshold Tester, Medelec).5 The stimulating thermode has a surface area of 12.5 cm². Using a constant rate of temperature change (1ºC/s), the stimulus intensity is graded by changing the duration of stimulus application. The baseline skin temperature is maintained at 34ºC. The thermal threshold is defined as the minimal temperature change from the baseline skin temperature that the subject can reliably perceive.5

Middlesex Hospital thermal testing system

This is another computer-driven portable system with no water cooling system. The stimulating surface area is 7.5 cm² for the hand and 26 cm² for the foot.16 Similar to the Glasgow system, the rate of temperature change is kept constant at 1ºC/s and the stimulus duration determines the stimuli intensity. The warm and cool thresholds are determined by utilizing the yes-no method to obtain the subject’s responses and the staircase algorithm to change the stimulus intensities.16

Thermal sensitivity tester (Sensortek, Inc., Clifton, NJ)

This device consists of two 25 cm² nickel-coated copper plates connected to different power units and cooled with water. The subject alternately presses on each plate for 2 seconds. The temperature of one plate changes on a series of fixed-step digital controls while the temperature of the other plate is maintained at 25ºC. The temperature difference between the plates is displayed on a meter.1

Thermal sensory analyzer TSA-2001 (Medoc Ltd., Israel)

This is also a microprocessor driven automated system. The thermode size is 50 x 25 mm² and the temperature range is 0-50ºC. A computer feedback mechanism controls the temperature of the thermode. The yes-no method is used to obtain subject’s responses. The stimulus intensities are adjusted with an initial step of 4ºC with subsequent steps reduced in half until step size reached 0.2ºC. Unlike the CASE IV system, no visual or auditory cues are given to signal stimulus onset.36

PATH-tester MPI 100 (PHYWE Systeme GmbH, Germany)

This is a microcomputer-driven modified Marstock thermode. The thermode contact surface measures 1.6 x 3.6 cm. The temperature range is 17ºC to 50ºC and it is controlled by a feedback circuit.6

REPRODUCIBILITY

The following table summarizes the reproducibility studies on vibration, thermal, and heat-pain thresholds that have reported in the literature since 1981. The conclusions are those of the author(s) of the papers cited and not those of the AAEM or the authors of this article.
Reproducibility Studies on QST

<table>
<thead>
<tr>
<th>Ref</th>
<th>Subjects</th>
<th>Interval</th>
<th>Modality</th>
<th>Equipment</th>
<th>Methodology</th>
<th>Measure of Reproducibility</th>
<th>Conclusion</th>
</tr>
</thead>
<tbody>
<tr>
<td>34</td>
<td>7 diabetics with neuropathy and 7 matched non-diabetic controls.</td>
<td>3 times daily on 2 separate days within 3 weeks</td>
<td>Vibration</td>
<td>Maxivibrometer (Penn State University, University Park, PA) Heel probe area: 12.5 mm diameter Frequency: 60 Hz. Amplitude range: 1 to 1100 micrometer</td>
<td>Method of Limits. As the stimulus intensity increased, the subject pressed the button as soon as vibration was perceived. Computer recorded this as appearance threshold. Then, the stimulus intensity decreased and the subject pressed the button as soon as the vibration was no longer felt (disappearance threshold). The procedure was repeated 3 times so that measurements were made. The average of these 6 measurements was considered the threshold. Stimulation site: right halluc. 1 examiner only.</td>
<td>Replication to replication ICC Controls: 0.980 Diabetes: 0.956</td>
<td>Excellent reliability</td>
</tr>
<tr>
<td>30</td>
<td>101 NS, age 6-17</td>
<td>2-4 weeks</td>
<td>Warm, Cold Vibration</td>
<td>Medoc TSA-2001 (Medoc, Israel) Thermo area: 3 x 3 cm Temperature range: 0-50ºC Rate of change: 1ºC/s Medoc Vibratory Sensory Analyzer (Medoc, Israel) Frequency: 100 Hz Probe area: 1.2 cm² Constant weight: 70 g</td>
<td>Method of Limits. Skin adaptation temperature 32ºC, rate of return 1ºC/s, average of 4 readings, 6 s interstimulus interval, rate of return 10ºC/s, average of 3 readings, 10 s interstimulus interval. Method of Levels. Yes or no response. Initial temperature step of 3ºC. Subsequent step sizes were increased or decreased at one half the initial intensity. Null stimuli included. Test terminates when step size decreased to 0.1ºC. Threshold = average of the last “yes” and “no” response. Method of Limits. Linearly increasing train of 4 stimuli. Intensity starting at 0 µm amplitude and increased at 0.1 µm/s. Threshold = average of 4 consecutive determinations.</td>
<td>Wilcoxon signed-ranks test with a Bonferroni correction for multiple comparisons. Hand and foot. p>0.05</td>
<td>a. No significant session differences b. No significant session differences c. No significant session differences</td>
</tr>
<tr>
<td>24</td>
<td>49 children, age 3.3 to 6.8</td>
<td>1 to 58 days (27.3±22.9)</td>
<td>Vibration</td>
<td>Vibrameter (Stockholm, Sweden) Frequency: 120 Hz Probe diameter: 13 mm Constant weight: 650 g</td>
<td>Method of Limits. Vibration threshold is the average of 3 appearance thresholds and 3 disappearance thresholds. Catch trials with no stimulation or steady stimuli were included.</td>
<td>2-sided Wilcoxon signed ranks test: p>0.1 2-tailed Spearman rank test: r = 0.590, p<0.01</td>
<td>High reproducibility</td>
</tr>
<tr>
<td>31</td>
<td>23 diabetics with neuropathy</td>
<td>3 times over 21 days with 1 to 14 day intervals</td>
<td>Vibration</td>
<td>Vibratron II (Clifton, NJ) Probe area 1.5 cm²</td>
<td>Method of Levels. 2 alternative (spatial) FC. 1 examiner only. 2 identical probes were presented to the subject. The subject is asked to identify which one was actually vibrating. The test began at the highest intensity of 20 vibration units (VU) or at a lower intensity appropriate for the patient. The intensity was decreased by 10% after each correct response and increased by 10% after each wrong response. 5 wrong answers were enough to finish the examination. The lowest and highest value of 10 errors and correct responses were eliminated and the mean of the remaining 8 score was called the VT.</td>
<td></td>
<td>Reproducible</td>
</tr>
<tr>
<td>33</td>
<td>64 diabetics</td>
<td>2 to 4 weeks and Same day</td>
<td>Pressure</td>
<td>Semmes Weinstein monofilaments (sizes 4.17, 5.07, 6.10)</td>
<td>Monofilaments applied on both feet at the first toe, medial surface and base of the third metatarsal bone. Threshold was defined as the total number of times the application of the monofilaments was not felt. This could vary between 0 and 18.</td>
<td></td>
<td>Sufficiently Reproducible</td>
</tr>
<tr>
<td>13</td>
<td>25 NS</td>
<td>Twice at intervals of more than a day but less than 2 weeks</td>
<td>Heat-Pain</td>
<td>CASE IV (WR Medical Electronics Co. Stillwater, MN) Thermode area 10 cm² rate of change 4ºC/s.</td>
<td>Non-repeating with null stimuli algorithm (see text for details).</td>
<td>HP:0.5% - to 70% within 1 stimulus step HP:5.0% to 88% within 1 stimulus step</td>
<td>Low variability</td>
</tr>
<tr>
<td>37</td>
<td>72-76 NS, age 20-59</td>
<td>2 weeks</td>
<td>Heat-Pain</td>
<td>Medoc TSA-2001 (Medoc, Ramat, Yishai, Israel) Thermode area 46 x 30 mm²</td>
<td>Method of Limits. Skin adaptation temperature 32ºC, rate of temperature change 2ºC/s, average of 3 readings, 20 s interstimulus interval.</td>
<td>ANOVA-based model by Techno-Stat “r” value Thenar 5.85** Foot 4.47 ** significant intersession bias “r” value -95% confidence that 2 measurements on the same patient would differ by less than r.</td>
<td>Poor Sufficient</td>
</tr>
<tr>
<td>Ref</td>
<td>Subjects</td>
<td>Interval</td>
<td>Modality</td>
<td>Equipment</td>
<td>Methodology</td>
<td>Measure of Reproducibility</td>
<td>Conclusion</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>------------</td>
</tr>
</tbody>
</table>
| 36 | 72-76 NS, age 20-59 | 2 weeks | Warm, Cold | Medoc TSA-2001 (Medoc, Israel)
thermode 50 x 25 mm²
20 Hz feedback, mechanism to maintain linear temperature change | a. Method of Limits. Skin adaptation temperature 32°C, rate of temperature change 1°C/s, cold and warm perception thresholds, average of 3 readings, 6 s interstimulus interval.
b. Method of Levels: (Modified from Yamatsky and Ochoa 1990, 1991), yes or no response, initial step of 4°C, reduced by half until step size reached 0.2°C.
c. Method of Levels: Staircase algorithm (Fowler 1987), yes or no response, initial temperature step of 4°C, subsequent steps at 1°C, then 0.2°C, test terminates after 4 “no” responses. | ANOVA-based model by Techno-Stat
"r" value
a. Thenar cold 1.964**
Warm 1.587**
Foot cold 3.778
Warm 4.298
b. Thenar cold 1.040
Warm 0.572
Foot cold 3.016
Warm 3.758
c. Thenar cold 1.144
Warm 0.720
significant intersession bias | Poor |
| 32 | 132 diabetics with moderate neuropathy, age 18-66, mean 45.4 | 4 weeks | Warm, Cold Vibration | Thermal Testing System
(London, UK)
Bio-Thesimeter
(Bio-Medical Instruments, Newbury, OH) | A multicenter study, FC, ascending and descending intensity ramps. | Total variation coefficient (%)
Warm 64.5
Cold 116.6
Vib mm 35.3
Vib toe 41.0
Intra-subject variability
(% total variance)
Warm 32.8
Cold 15.7
Vib mm 21.0
Vib toe 21.0 | Poor |
| 7 | 30 NS, 12 diabetics | Within 1 week | Vibration Warm Cold | Vibratester 100 (Phyne systeme GmbH, D3400, Gottinger, Germany), frequency 100 Hz, amplitude 0-150μm
Warm, Cold, computer-driven modified Marstock thermode-PATH-Tester MPI 100 (Phyne Systeme GmbH, D3400, Gottinger, Germany), thermode size 1.6 x 3.6 cm
Ramp rate 1°C/s
Reference temp 35°C
Temperature limits 17 to 50°C | **Vibration:**
a. Method of Limits. The subject is asked to press a button when vibration is perceived with an increasing ramp (perception threshold) and when vibration disappeared with a decreasing ramp (disappearance threshold). Ramp rate- 0.2; m/s threshold is calculated from the mean of 3 vibration perception thresholds and 3 vibration disappearance thresholds.
b. 2 alternative (temporal) FC. Up, down transformed rule, amplitude changes are in steps of 25% of the first stimulus. Threshold- the mean of 5 upper and lower reversal values.
c. Titration Method. Stimulus starts with a suprathreshold stimulus (VT + VT¹/²) stimulus amplitude is reduced in small steps until it disappears, catch trials inserted at random, threshold- mean of 5 nonperceived stimuli with reversing effect and their preceding perceived stimuli. | Total variation coefficient (%)
Warm 48.9
Cold 105.7
Vib mm 35.3
Vib toe 41.0
Magnitude of day-to-day differences
(% of mean value)
Vib mm 55.0
Vib toe 60.0
90th %ile of absolute day-to-day difference
Vib mm 10.0
Vib toe 15.0
90th %ile of absolute day-to-day difference
Vib mm 5.0
Vib toe 6.0 | Poor |
| 5 | 39 diabetics without neuropathy, mean age 56.7±8.6 | 2 weeks | Warm, Cold | Thermal Threshold Tester
(Medelec, Woking, UK) | 2 alternative (temporal) FC. Initial reference temperature 34°C, rate of change 1°C/s, uniform size of steps. Use of varying stimulus duration to change stimulus intensity level with the up-down transformed rule. | **Repeatability coefficient** is twice the SD. SD is calculated from the mean of all differences between measurement 1 and 2 (after 2 weeks).
Normal/abnormal
Warm hand 0.19/1.17
Cold hand 0.17/1.01
Warm foot 4.34/---
Cold foot 0.60/4.69
--- Insufficient sample size | Acceptable/poor |
<table>
<thead>
<tr>
<th>Ref</th>
<th>Subjects</th>
<th>Interval</th>
<th>Modality</th>
<th>Equipment</th>
<th>Methodology</th>
<th>Measure of Reproducibility</th>
<th>Conclusion*</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>20 diabetics with and without neuropathy</td>
<td>3 to 5 days</td>
<td>Warm, Cold Vibration</td>
<td>CASE III/IV systems*, thermode 10 cm²</td>
<td>2 alternative (temporal) FC. Up down transformed rule, algorithm†, thermode‡</td>
<td>ICC ″ry″ value Warm >0.8 Cold <0.9 Vibration >0.9 "ry" value- proportion of this variance attributable to variability among subjects ranging from 0 to 1. 0 = all variability is experimental error. 1 = no error.</td>
<td>High Reproducibility</td>
</tr>
<tr>
<td>10</td>
<td>20 NS</td>
<td>“Separate” days</td>
<td>Vibration</td>
<td>CASE IV: vibratory transducer, frequency 120 Hz</td>
<td>a. 2 alternative (temporal) FC. Up down transformed rule. b. Method of Limits. Bekesy algorithm with null stimuli. c. Method of Limits. Linear ramp algorithm with and without null stimuli.</td>
<td>Index finger < 4 JND 75th percentile < 2 JND Great toe < 4 JND 75th percentile < 2 JND</td>
<td>Accurate and repeatable</td>
</tr>
<tr>
<td>6</td>
<td>55 NS, 28 f , 27 m, age 20-79, mean age 41</td>
<td>3 consecutive days</td>
<td>Cold, Warm</td>
<td>Computer-driven modified Marstock- PATH-Tester MPI 100 (PHYNEX Systeme GmbH, Germany) Thermode size 1.6 x 3.6 cm Ramp rate 1°C/s Reference temp 35°C Temperature limits 17 to 50°C</td>
<td>Method of Limits. Warm and cool thresholds tested separately. Initial steps of 0.5°C, then steps of 0.1°C, after 6 changes in direction, the mean of reversing values represents the threshold. Sufficient reproducibility for 1st-2nd and 2nd-3rd trial.</td>
<td>CV (mean) Normal Subjects Method of Limits Warm 14% Cool 42% Method of Levels Diabetics Method of Levels Mean± SD test 1 1.75 ± 1.51°C test 2 1.04 ± 0.71°C</td>
<td>Suitable for clinical use Suitable for clinical use Suitable for clinical use</td>
</tr>
<tr>
<td>29</td>
<td>5 NS</td>
<td>3 occasions over 3 to 6 weeks</td>
<td>Thermal</td>
<td>Somedic modification of Marstock method Thermal Sensitivity Tester (Sensorteck, Inc., Clifton, NJ)</td>
<td>Method of Limits. Warm and cool thresholds tested separately. 2 alternative (spatial) FC. 1 plate maintained at 30°C, up-down-transformed rule, threshold is mean of 6 turnaround points.</td>
<td>Re-test Reliability coefficient “Rtt” Warm threshold: 1st-2nd trial 0.890/0.73 2nd-3rd trial 0.880/0.83 Cold threshold: 1st to 3rd trial poor</td>
<td>Sufficient reproducibility for 1st-2nd and 2nd-3rd trial</td>
</tr>
<tr>
<td>9</td>
<td>71 NS, M/F 29-42, age 21 to 92</td>
<td>Twice on ”separate” days.</td>
<td>Thermal</td>
<td>2 thermostimulators 3 x 4 cm</td>
<td>2 alternative (spatial) FC. First thermode is maintained at 5°C above or below skin temperature when evaluating warm or cold thresholds respectively. Second thermode’s temperature is varied at a random sequence. Initial temperature difference between the 2 thermodes is 10°C and is changed according to the up-down transformed rule. Correct answer = CCC, CCWC Wrong answer = CW,CCWW Thermal discrimination threshold is defined as the mean value of the last 6 reversal points.</td>
<td>CV Warm 58.4% Cold 56.0% Large intraindividual variability</td>
<td>Suitable for clinical use Suitable for clinical use Suitable for clinical use</td>
</tr>
<tr>
<td>Ref</td>
<td>Subjects</td>
<td>INTERVAL</td>
<td>MODALITY</td>
<td>EQUIPMENT</td>
<td>METHODOLOGY</td>
<td>MEASURE OF REPRODUCIBILITY</td>
<td>CONCLUSION</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
<td>---------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>1</td>
<td>10 NS</td>
<td>10 times at intervals of at least a day</td>
<td>Thermal</td>
<td>Thermal Sensitivity Tester (Sensorteck, Inc., Clifton, NJ), thermode 25 cm²</td>
<td>2 alternative (spatial) FC: 1 plate maintained at 25°C, initial temperature difference 6°C, steps of 10% up and down</td>
<td>Mean CV, 19% index finger, 26.6% great toe, CV range 8.3% to 47.1%</td>
<td>Reliable</td>
</tr>
<tr>
<td>3</td>
<td>25 NS, 60 diabetics (39 with neuropathy, 21 without), M:F 30:30, age 17 to 73, mean age 1.8±2.1</td>
<td>1 week</td>
<td>Vibration</td>
<td>Modified Bio-theisiometer (Bio-Medical Instruments, Newbury, OH)</td>
<td>Vibration perception threshold is the mean of 5.</td>
<td>Pearson CC NS/diabetics 0.820.81 Intra-individual variability-change in the mean values of thresholds expressed as a percentage of the first measurement Normal/ diabetics 4.9%/12.8%</td>
<td>Satisfactory in NS and most diabetics</td>
</tr>
<tr>
<td>23</td>
<td>M:F 33:21, age 21 to 55, mean age 34.3</td>
<td>4 weeks</td>
<td>Vibration</td>
<td>Bio-Theisiometer (Biomedical Instruments, Newbury, OH), Marstock thermostimulator (Somedic, Sweden), Thermode 2.5 x 5.0 cm, rate of change 1°C/s</td>
<td>Vibration threshold is the mean of 3 trials.</td>
<td>CC Vibration: NS Hands r = 0.83 p<0.01 Feet r = 0.86 p<0.01 Diabetics Hands r = 0.73 p<0.01 Feet r = 0.91 p<0.01 Thermal: NS Hands r = 0.69 p<0.01 Feet r = 0.79 p<0.01 Diabetics Hands r = 0.91 p<0.01 Feet r = 0.89 p<0.01</td>
<td>No significant differences Reproducible</td>
</tr>
<tr>
<td>25</td>
<td>106 NS, age 6 to 73, mean age 33.0, SD 17, M:F 45:61 2NS</td>
<td>Short term: 24 hours Long term: 2 to 8 weeks, 17 times daily</td>
<td>Thermal</td>
<td>Glasgow Thermal System Computer driven thermode current calculated every 100 ms Thermode 2.5 x 5.0 cm, water cooled</td>
<td>2 alternative (temporal) FC with null stimuli: 1 person performed all tests. Initial skin temperature 34°C to 35°C, rate of down transformed rule uniform size of steps use of varying stimulus duration to change the stimulus intensity level. Site of stimulation: mid-forearm.</td>
<td>Change in mean (of the group) thermal threshold < 5% CV 0% to 6%</td>
<td>Small intra-individual variation</td>
</tr>
<tr>
<td>23</td>
<td>M:F 33:21, age 21 to 55, mean age 34.3</td>
<td>4 weeks</td>
<td>Vibration</td>
<td>Bio-Theisiometer (Biomedical Instruments, Newbury, OH), Marstock thermostimulator (Somedic, Sweden), Thermode 2.5 x 5.0 cm, rate of change 1°C/s</td>
<td>Vibration threshold is the mean of 3 trials.</td>
<td>CC Vibration: NS Hands r = 0.83 p<0.01 Feet r = 0.86 p<0.01 Diabetics Hands r = 0.73 p<0.01 Feet r = 0.91 p<0.01 Thermal: NS Hands r = 0.69 p<0.01 Feet r = 0.79 p<0.01 Diabetics Hands r = 0.91 p<0.01 Feet r = 0.89 p<0.01</td>
<td>No significant differences Reproducible</td>
</tr>
<tr>
<td>25</td>
<td>106 NS, age 6 to 73, mean age 33.0, SD 17, M:F 45:61 2NS</td>
<td>Short term: 24 hours Long term: 2 to 8 weeks, 17 times daily</td>
<td>Thermal</td>
<td>Glasgow Thermal System Computer driven thermode current calculated every 100 ms Thermode 2.5 x 5.0 cm, water cooled</td>
<td>2 alternative (temporal) FC with null stimuli: 1 person performed all tests. Initial skin temperature 34°C to 35°C, rate of down transformed rule uniform size of steps use of varying stimulus duration to change the stimulus intensity level. Site of stimulation: mid-forearm.</td>
<td>Change in mean (of the group) thermal threshold < 5% CV 0% to 6%</td>
<td>Small intra-individual variation</td>
</tr>
<tr>
<td>25</td>
<td>106 NS, age 6 to 73, mean age 33.0, SD 17, M:F 45:61 2NS</td>
<td>Short term: 24 hours Long term: 2 to 8 weeks, 17 times daily</td>
<td>Thermal</td>
<td>Glasgow Thermal System Computer driven thermode current calculated every 100 ms Thermode 2.5 x 5.0 cm, water cooled</td>
<td>2 alternative (temporal) FC with null stimuli: 1 person performed all tests. Initial skin temperature 34°C to 35°C, rate of down transformed rule uniform size of steps use of varying stimulus duration to change the stimulus intensity level. Site of stimulation: mid-forearm.</td>
<td>Change in mean (of the group) thermal threshold < 5% CV 0% to 6%</td>
<td>Small intra-individual variation</td>
</tr>
<tr>
<td>4</td>
<td>30 NS, age 24 to 91, M:F 11:25 20 diabetics with neuropathy, age 22 to 69, M:F 9:11</td>
<td>1 week</td>
<td>Thermal</td>
<td>2 thermostimulators, Thermode size 3 x 4 cm</td>
<td>2 alternative (spatial) FC: First thermode is maintained at skin temperature. Second thermode’s temperature is varied at a random sequence. Initial temperature difference between the 2 thermodes is 10°C and is changed according to the up-down transformed rule. Correct answer = CCC, CCWC Wrong answer = CW, CCWW Thermal discrimination threshold is defined as the mean value of the last 6 reversal points.</td>
<td>Intra-individual variability expressed as maximum difference of TDTs between the 1st and second trial. 0.5°C for the hands and feet of NS and for the hands of diabetics. Note: 3 diabetics were excluded. 1st and 2nd trial TDTs were as follows: 0.4°C to 3.0°C 0.6°C to 7.5°C 0.5°C to 4.0°C</td>
<td>Small intra-individual variability in all NS and in most diabetic patients</td>
</tr>
<tr>
<td>15</td>
<td>13 NS, age 25 to 63, mean age 43.7, M:F 5:8 27 patients with neuropathy of various etiologies age 27 to 71, mean age 53.2, M:F 22.5</td>
<td>Short interval Vibration, 5 NS; 4 times within 5 to 10 minutes. Long interval 13 NS, 4 consecutive days in 1 wk. 4 times at intervals of 1, 3, 5 wks. 27 patients, 4 to 5 times in 7 to 13 wks.</td>
<td>Vibration</td>
<td>Hand-held bioTheisiometer Vibrometer (MUAB AB, Sweden) 100 Hz Tactile Stimulator (Lundblom) Marstock Stimulator</td>
<td>Average of at least 2 up and down values. Method of Limits (warm-cold limen)</td>
<td>% change from first determination. Short term, vibration only, 8% to 18%</td>
<td>Short term: Limited variation Long term: Pronounced variation</td>
</tr>
</tbody>
</table>

ANOVA = analysis of variance; C = Correct; CC = Correlation Coefficient; CCSV = Correlation Coefficient Variation; CV = Coefficient of Variation; FC = Force Choice; HP = Heat Pain; ICC = Interclass Correlation Coefficient; JND = just noticeable difference; M:F = Male/Female; mm = medial malleolus; NS = Normal Subjects; s = second; SD = Standard Deviation; TDT = Thermal Discriminating Thresholds; vib= vibration; VT = Vibration Threshold; VU = Vibration Units; W = Wrong; wks = weeks y = years.

** The conclusion listed in this column is that of the author(s) of the paper cited in the reference. The conclusion is not the opinion of the AAEM.
REFERENCES

