Introduction

- Review nerve physiology/ anatomy
- Purpose of testing
- Study design
- Motor NCS
- Sensory NCS
- Mixed NCS
- Interpretation
- Technical considerations
- Summary
Anatomy

- Motor Neuron
 - Axon
 - Myelin
 - Neuromuscular Junction
 - Muscle fibers
Anatomy

- Dorsal Root ganglion: Bipolar Nerve cell
 - One projection central
 - Dorsal column
 - Other axon distal
 - Sensory end organ
 - Myelinated: different degrees
Anatomy

- Neurons
 - AHC
 - DRG
- Roots
- Rami
 - Ventral Rami:
 - Plexus
 - Dorsal Rami:
 - Paraspinals
Anatomy

- Certain nerves are routinely studied
 - Location
 - Size
 - Important pathology
 - Ease of evaluation

- Some are less often studied

- Some are rarely studied
Study Design

- Answer the clinical question
 - Not just routine

- Specifically choose nerve evaluation needed
 - Motor NCS
 - Sensory NCS
 - Repetitive stimulation
 - Other (mixed study)

- Least number of NCS needed to answer the clinical question
 - I.e.. CTS
Purpose of testing

Neuropathy

- Focal
 - Carpal Tunnel Syndrome (CTS)
 - Peroneal neuropathy
 - Ulnar neuropathy

- Generalized
 - Diabetic Neuropathy
 - Guillain Barre syndrome (GBS)

- Axonal
 - Diabetic Neuropathy
 - Nerve transection

- Demyelinating
 - GBS
 - CTS

Other conditions

- Radiculopathy
- Neuromuscular junction defects
 - Myasthenia Gravis
 - LEMS
- Motor Neuron Disease
 - ALS
- Sensory Neuronopathy
 - Sjogren’s disease
Motor nerve conduction studies

- Larger
- More reproducible
- Troubleshooting is easier
Why?

- Compound Muscle Action Potential
- Muscle amplifies the response
 - Stimulate nerve axons
 - Causes muscle to contract
 - Recording the muscle contraction
 - Response is in millivolts
 - (1000X larger than SNAP)
 - Few anatomic variations
 - Large motor axons tend to be affected late in disease states
Motor NCS

- Belly-Tendon montage
 - G1: active
 - G2: reference

- Stimulate proximal
 - Measure site (s)
 - Consistent

- 0-60mAmps stimulation
 - 0.1ms duration
 - May need to adjust
Motor NCS parameters

- Latency
 - Onset
 - Time (mS)
- Amplitude
 - Baseline to peak
 - Electrical signal (mV)
 - Muscle contraction
Conduction velocity: two points in time
- Rate = distance/ time
 - So 2 points are needed
 - i.e. CV = 20cm/4ms
- Cannot record a distal conduction
- Why?
 - Neuromuscular junction
 - Cannot accurately calculate time
Conduction Velocity

- Rate = distance/ time
- E.g., Median Nerve:
 - Distal latency: 4 ms
 - Proximal latency: 8 ms
 - Measure:
 - 20 cm between 2 sites

- CV = d/ t
- CV = 20 cm/ 8 ms - 4 ms
- CV = 20 cm/ 4 ms
- CV = 200 mm/ 4 ms
- CV = 200 m/ 4 s
- CV = 50 m/ s
Motor NCS parameters

- Area
 - Not used frequently
 - Used when considering conduction block
 - Often calculated automatically by modern machines

- Duration of waveform
 - Temporal dispersion
 - Demyelinating disease
 - Or with severe axonal loss
Sensory Nerve conduction studies

- Summation of all sensory nerve fiber action potentials
 - SNAP (sensory nerve action potential)
 - Fibers are of mixed type:
 - Large/ small
 - Myelinated/ unmyelinated
- Small
 - μVolts
DRG

- External to the spinal cord
- May be located in intervertebral foramen
 - Lesions may be proximal to DRG
- Important consideration
 - Distal axon and DRG may be spared
 - Therefore Sensory NCS may be normal
 - Despite symptoms!
Sensory NCS parameters

- Latency (ms)
 - Onset
 - Peak: more commonly used
 - More reproducible/consistent

- Amplitude (µV)
 - Baseline to peak
 - Peak to peak

- Duration

- Conduction velocity
 - Can calculate a distal velocity
 - Use onset latency for CV
 - Fastest fibers
Sensory NCS

- Antidromic
 - Anti: “against” or opposite
 - I.e.: Against natural conduction
 - Stimulate proximal, record distal

- Orthodromic
 - Ortho: “right” or correct
 - I.e.: Natural direction of sensation
 - Stimulate distal; record proximal
Antidromic SNCS

- More common
 - Why?

- In general, easier

- Higher amplitude responses
 - Sensory nerve is more superficial in distal skin
 - Easier to obtain and record
Antidromic Sensory NCS
Orthodromic Sensory NCS

![Graph showing Orthodromic and Antidromic NCS data]

<table>
<thead>
<tr>
<th>Method</th>
<th>Peak latency (ms)</th>
<th>Amplitude (mV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Orthodromic</td>
<td>2.8</td>
</tr>
<tr>
<td>B</td>
<td>Antidromic</td>
<td>2.9</td>
</tr>
</tbody>
</table>
“Mixed” nerve studies

- Motor is pure motor: belly-tendon montage
 - Recording muscle

- Sensory NCS should record only sensory fibers
 - Record over skin
 - Evaluate SNAP

- But, some nerves recorded are mixed
 - Both sensory and motor fibers present
 - Stimulation
 - Recording site
“Mixed” nerve studies

- Palmar studies
- Tarsal Tunnel studies (plantar nerve)
- Specialized studies
 - Evaluating one specific lesion
 - Carpal tunnel syndrome
 - Tarsal tunnel syndrome
 - Not pure sensory potentials
 - Cannot assess integrity of sensory nerve/DRG
Mixed NCS

- Palmar record over wrist
 - Median and ulnar
 - Both motor and sensory fibers present
 - Stimulate in palm
 - Both motor and sensory fibers present
- Comparison of latencies
 - Amplitude is less relevant
Other considerations in NCS

- Physiologic temporal dispersion
 - Not all dispersion is pathologic
 - Proximal amplitudes are lower than distal
 - Double check your results!
 - Why?
 - Loss of synchrony over longer distances
 - Proximal nerves are deeper and more difficult to stimulate
Averaging

- Used for low amplitude sensory nerve potentials
 - Additive waveforms confirm + presence of SNAP
 - Subtracts out artifact

- Lateral antebrachial cutaneous sensory responses
 - Effect of averaging: 1, 2, 6, 10 responses
Routinely evaluated nerves

- **Motor:**
 - Tibial, Fibular (peroneal)
 - Median, Ulnar

- **Sensory**
 - Sural
 - Median, Ulnar

- **Mixed**
 - Palmars
 - Carpal Tunnel syndrome only
Commonly evaluated nerves

- Motor:
 - Radial

- Sensory:
 - Superficial Fibular (Peroneal)
 - Radial
 - Medial antebrachial cutaneous
 - Lateral antebrachial cutaneous
 - Dorsal Ulnar cutaneous

- Mixed:
 - Medial and Lateral plantars (tarsal tunnel)
Late Responses: F waves/ H reflexes

- Both are used to answer a specific clinical question
 - F waves: primarily used to evaluate proximal demyelination
 - GBS/ CIDP
 - Radiculopathy
 - H reflex: used to evaluate radiculopathy
 - S1 nerve root
F waves

- Electrical signal travelling up to anterior horn cell
 - “bounces” back
 - NOT a reflex
- Wave traveling up and back down motor axons
- Proportion of axons
 - Differs with each stimulus
 - So each waveform varies
- Reflects speed of conduction
F-wave utility

- Radiculopathy
 - Demyelinating (ie nerve root compression)
 - May be prolonged
 - Axonal
 - May disappear

- Demyelinating disease
 - Early: may have no change
 - Mid-course: delay in F-wave latency
 - Late/ severe: loss of F-wave

- F-wave absent/ not recorded
 - Can be normal occurrence
 - Especially in median and radial nerves
F wave parameters

- Latency
 - ms

- “Normal”
 - Upper limit of normal
 - Depends on height
 - Either for short or tall persons
 - Need a normogram
 - Calculate expected time
Late Response: H reflex

- True reflex
- Afferent loop: la sensory fibers
- Efferent loop: Motor axons
- Actual synapse
H reflex

- S1 nerve root
 - Tibial N. stim
 - recording from gastrocnemius

- Other H reflex responses are difficult to elicit

- H reflex largest with submaximal stimulation
 - As stimulation increases
 - H reflex diminishes
 - M-wave (motor response) increases
H reflex utility

- Proximal damage to either sensory or motor pathway
 - Radiculopathies
 - Avulsion
- Side to side comparison
- Tibial nerve studied most often
 - Upper limit of normal latency is 35 ms
NCS: Basic Interpretations

- **Amplitude:** related to the number of axons in a nerve
- **Latency:** a marker of time; therefore, most affected by demyelinating processes
- **Conduction velocity:** speed; can be affected by both axonal loss and demyelination
 - Large, fast conducting fibers are lost
 - Moderate slowing
 - Demyelination
 - Marked slowing
Normal Values

- Vary lab to lab
- No universal standards
- General principles apply
 - Side to side variability
 - < 50% difference
 - amplitude
 - Physiologic temporal dispersion
 - <20 % drop in amplitude
 - Comparison studies
 - < 0.2 or 0.3 ms difference
- In general
- Conduction velocities
 - Motor NCS
 - Legs > 40 M/s
 - Arms > 50 M/s
 - Sensory NCS
 - 10 M/s faster
Conduction Velocity

- Determined by the fastest conducting fibers

- Motor NCS
 - Legs: 40 M/s
 - Arms: 50 M/s
 - Sensory CV about 10 M/s faster

- Axonal loss can produce slowing
 - <2/3 LLN
 - Legs > 30 M/s
 - Arms > 40 M/s

- Demyelination
 - Produces significant slowing
 - > 2/3 LLN
 - Legs < 30 M/s
 - Arms < 40 M/s
Axonal Loss

- Most Neuropathies
 - LE > UE
 - Distal > proximal
 - Sensory > Motor

- So a NCS study in a patient with Neuropathy
 - Low amplitudes, more severe in the legs than arms
 - Loss of sensory responses in legs early on
 - CV slowing > 2/3 LLN
Demyelinating Process

Hereditary

- Uniform slowing
 - Across all segments
- Uniform waveform shape
 - CMAPs
- Profound slowing

Acquired

- Non-uniform process
- Conduction block
 - Non-compressible segments
- Temporal dispersion
- Increased variability in range of velocities
- Some nerves affected more than others
 - MMN
Focal vs. Generalized

- **Focal lesion**
 - Either axonal or demyelinating
 - Compression
 - Demyelinating
 - CTS, ulnar neuropathy
 - Axonal
 - Mononeuritis multiplex
 - Nerve transection

- **Generalized**
 - More often due to systemic process
 - Axonal
 - Polyneuropathy
 - Demyelinating
 - GBS
 - CIDP
Safety Considerations

- For NCS
 - Generally very safe

- EMG/NCS machine electrically certified
 - Checked annually to rule out “leak”
 - Grounded outlet

- Do not create an electric circuit through patient
 - I.e. Bed unplugged, no other devices attached to pt
 - But, studies are done in ICUs routinely, with precautions
 - Pacemaker: not a problem if one stays distal and ground is near stimulator
 - Other devices: turn off if possible (artifact!)
Technical Problems

- Temperature
- Incorrect measurements
- Inter-electrode distance (too far or too close)
- Background interference/ noise
- Incomplete circuit
 - I.e.: check to make sure electrodes are plugged in!
Temperature

- Very important
 - Commonly ignored/missed
 - 0.2ms/degree centigrade

- Arms > 31 °C
- Legs > 30 °C
- Must check distal limb
 - Thermistor
 - Infrared temperature probe
Summary: NCS

- Easily tolerated, safe
- Must be consistent in technique
 - Intralab normal values
- Monitor for technical issues
- Very sensitive to axonal loss
- Very specific for demyelinating disease