Nuances of EMG interpretation in pediatrics

Hugh McMillan, MD, MSc, FRCPC, FAAN
Pediatric Neurologist
Children’s Hospital of Eastern Ontario, Ottawa, Canada

October 18, 2019
Financial Disclosure

• Consulting fees for AveXis (Novartis)

• Co-editor of textbook (with Dr. Peter Kang); “Pediatric Electromyography” (Springer)

• Primary investigator (no personal renumeration) for clinical trials sponsored by:
 • AveXis (Novartis); Roche; Catabasis; ReveraGen; PTC Therapeutics; Sarepta, Wave Life Sciences
Warning

Videotaping or taking pictures of the slides associated with this presentation is prohibited. The information on the slides is copyrighted and cannot be used without permission and author attribution.
Objectives

• Discuss:
 • Normal maturation of peripheral nerves & effect upon NCS
 • Repetitive nerve stimulation & SSFEMG
 • Normal maturation of muscle fibers & effect upon EMG
Peripheral nerve maturation

• Myelination begins as early as 15 weeks GA1

• Diameter of axons & surrounding myelin sheaths gradually increase from birth until adult values attained at around 4-5 years of age2

1Gamble & Breathnach. J Anat 1965; 99: 573-84
2Shroder. Pathology of Peripheral Nerves. 2001; 1-14
Nerve biopsies (toluidine blue staining, resin embedded) showing normal progression of peripheral nerve myelination with age.

A. **17-week old fetus** (normal lumbar plexus) shows essentially no myelination of large fiber axons;

B. **10-mos old infant** (normal sural nerve) shows thin myelin; and

C. **10-year-old child** (normal sural nerve) shows adult thickness of myelin.

Biopsy A was performed at the time of post-mortem study in a spontaneous delivery. Biopsies B and C were surgical specimen in patients with demonstrated either a muscular disease or a non-neurological systemic disease.

Photo credit: Dr. Jean Michaud, Department of Pathology, Children's Hospital of Eastern Ontario
Peripheral nerve maturation

<table>
<thead>
<tr>
<th>Age</th>
<th>Ulnar nerve conduction velocity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Premature, 25 wks gestational age</td>
<td>< 15 m/sec<sup>1</sup></td>
</tr>
<tr>
<td>Term newborn, 40 wks GA</td>
<td>20-36 m/sec<sup>2</sup></td>
</tr>
<tr>
<td>Adult, healthy</td>
<td>>58 m/sec<sup>3</sup></td>
</tr>
</tbody>
</table>

¹Lori S et al. Childs Nervous Syst. 2018: 34:1145-52
Peripheral nerve maturation
AANEM Consensus Statement
Electromyography in Pediatrics

• To be published soon in Muscle & Nerve

• AANEM’s Normative Data Taskforce criteria applied

• Good pediatric normative data

• Seven articles – published original, normative data on >100 patients (past 35 yrs)
 (eighth included, N=92)

<table>
<thead>
<tr>
<th>Study</th>
<th>Cohort</th>
<th>Sensory nerves</th>
<th>Motor nerves</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ryan et al, 2019<sup>1</sup></td>
<td>1,918 data sets 1,849 children (0-18 yo)</td>
<td>Median, ulnar, radial, LAC, MAC, sural, saphenous, peroneal, lateral & medial plantar</td>
<td>Median, ulnar, radial, spinal accessory, femoral, peroneal, tibial</td>
</tr>
<tr>
<td>Wang et al, 2014<sup>2</sup></td>
<td>163 children (0-14 yo)</td>
<td>Saphenous</td>
<td>Femoral</td>
</tr>
<tr>
<td>Garcia et al, 2000<sup>3</sup></td>
<td>92 children (0-6 yo)</td>
<td>Median, medial plantar</td>
<td>Median, ulnar, peroneal, tibial</td>
</tr>
<tr>
<td>Smit et al, 1999<sup>4</sup></td>
<td>200 preterm infants (25-30 wks GA)</td>
<td>N/a</td>
<td>Ulnar, tibial</td>
</tr>
<tr>
<td>Cai et al, 1997<sup>5</sup></td>
<td>168 children & adults (0-30 yo)</td>
<td>Median, ulnar, sural</td>
<td>Medial, ulnar, peroneal, tibial</td>
</tr>
<tr>
<td>Hyllienmark et al, 1995<sup>6</sup></td>
<td>128 children, young adults (0-20 yo)</td>
<td>Median, peroneal, sural</td>
<td>Median, peroneal</td>
</tr>
<tr>
<td>Parano et al, 1993<sup>7</sup></td>
<td>155 children (0-14 yo)</td>
<td>Median, sural</td>
<td>Median, peroneal</td>
</tr>
<tr>
<td>Lang et al, 1985<sup>8</sup></td>
<td>129 children (3-19 yo)</td>
<td>Radial, peroneal, sural</td>
<td>Median, peroneal</td>
</tr>
</tbody>
</table>

²Wang et al, Ped Neurol 2014: 50: 149-157
⁷Parano E. et al. J Child Neurol. 1993: 8: 336-338
⁸Lang HA et al. Muscle Nerve 1985: 8: 38-43
Approach to Pediatric Neuropathy

Is the neuropathy the only feature of the disease?
- no
 - Complex inherited neuropathy syndrome
 - Ataxia
 - Spasticity
 - Global neurodevelopmental impairment
- yes
 - CMT and related disorders
 - Other

What is the predominant phenotype?

<table>
<thead>
<tr>
<th>~30</th>
<th>~30</th>
<th>~30</th>
<th>>100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Friedreich</td>
<td>SPG</td>
<td>Giant axonal neuropathy</td>
<td>Eye (OPA1, NARP)</td>
</tr>
<tr>
<td>SCA</td>
<td>XL-ALD</td>
<td>Cockayne</td>
<td>Cranial nerve (BVVL)</td>
</tr>
<tr>
<td>ARSACS</td>
<td></td>
<td>Peroxisomal</td>
<td>Renal (Fabry)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Hepatic (tyrosinemia)</td>
</tr>
</tbody>
</table>

Approach to Pediatric Neuropathy

>100 genes
Charcot-Marie-Tooth disease + hereditary motor neuropathy + hereditary sensory autonomic neuropathy

Approach to Pediatric Neuropathy

- CMT
- Age artifact? (<5 yo)

Uniform slowing

- GBS
- CIDP
- Diphtheria
- Glue sniffing
- Krabbe disease
- Metachromatic leukodystrophy
- Cockayne syndrome
- Adrenoleukodystrophy
- HNPP
Approach to Pediatric Neuropathy

- CMT
- Age artifact? (<5 yo)

Uniform slowing
- GBS
- CIDP
- Diphtheria
- Glue sniffing
- Krabbe disease
- Metachromatic leukodystrophy
- Cockayne syndrome
- Adrenoleukodystrophy
- HNPP
Diphtheria

- *Corynebacterium diphtheria* toxin
- Acute pharyngitis (grey pseudomembrane)
- ~15% develop multiple cranial neuropathies
- May develop sensorimotor polyneuropathy (NCS may mimic Guillain-Barré syndrome)

Solvent abuse

- 11 yo healthy boy with progressive weakness (x 3 months)
- Distal > proximal weakness & sensory loss.
- NCS/EMG – sensorimotor polyneuropathy demyelinating features
 - Sensory responses – absent to bilateral median, ulnar, sural
 - Motor studies – abnormal to bilateral median, ulnar, peroneal, tibial
 - Conduction velocity < 50% lower limit normal
 - Conduction block in right median & right ulnar nerve (>50% amplitude drop between wrist & below elbow)
 - Absent F-responses – right median, ulnar, tibial
- CSF WBC normal; CSF protein normal
- MRI brain & spine unrevealing (no nerve root enhancement)
Solvent abuse
Infantile botulism

- *Clostridium botulinum* ubiquitous
- Spores germinate in immature infant gut → grow → release toxin
- ~98% of affected infants present between 1 and 6 mos old
- Infant botulism reported as early as the 1st week of life & as late as 12 mos old
- Toxin impairs acetylcholine release
- Symptoms: hypotonia, weakness, constipation, sluggish pupils, respiratory failure

Infantile botulism

- Repetitive nerve stimulation:

<table>
<thead>
<tr>
<th>RNS results:</th>
<th>N=25</th>
</tr>
</thead>
<tbody>
<tr>
<td>High rates (20-50 Hz)</td>
<td></td>
</tr>
<tr>
<td>Increment</td>
<td>23/25, 92%</td>
</tr>
<tr>
<td>Decrement</td>
<td>1/25, 4%</td>
</tr>
<tr>
<td>No change</td>
<td>1/25, 4%</td>
</tr>
<tr>
<td>Low rates (2-5Hz)</td>
<td></td>
</tr>
<tr>
<td>Increment</td>
<td>5/25, 20%</td>
</tr>
<tr>
<td>Decrement</td>
<td>14/25, 56%</td>
</tr>
<tr>
<td>No change</td>
<td>6/25, 24%</td>
</tr>
</tbody>
</table>

Infantile botulism

- Repetitive nerve stimulation left median nerve (APB):
 - At 5 Hz decrement, 8%
 - At 10Hz increment, 25%
 - At 20 Hz increment, 38%
 - At 50 Hz increment, 94%

Stimulated single fiber EMG

- Increasingly used NMJ disorders
- Eg. congenital myasthenic syndrome
Electromyography

• In children:
 • Study clinically, most important muscles first
 • Study “withdrawal muscles” (tibialis anterior, iliopsoas) for active recruitment & their antagonists (gastrocnemius, quadriceps) for spontaneous denervation

• In infants:
 • Developmental considerations for predicting recovery post-injury
Electromyography

- Infant (at 3 months old)
 - Diameter of muscle fiber = 17 µm³
 - More than 3-fold smaller than adult muscle fiber diameter

- Due to smaller cross-sectional area,
 infant muscle contains 11x motor units compared to adult

- Infant EMG can give "overly optimistic" impression of axonal continuity
EMG in root avulsion:
• Normal sensory studies
• Absent motor studies (Absent CMAPs)
• Profuse fibrillation potentials
• Few / absent MUAPs
• No improvement on f/u EMG (no nascent units)

MRI in root avulsion
• Pseudomeningocoel
• Nerve rootlets not seen

EMG provides useful information for management of these cases

Severe neonatal brachial plexus palsy
Severe neonatal brachial plexus palsy

MRI – no obvious abnormality?

MRI – thinning of left C5 & C6 nerve roots just proximal to upper trunk

Role of EMG is less clear in management / prognostication of these cases
Acute flaccid paralysis

- EMG – critical role localizing to motor neuron
- In 2018 – 285 cases of polio-like AFP reported (236 in USA; 49 in Canada)
- Cases annually, peaks in 2018, 2016, 2014

Other motor neuron disorders

- 16 yo, healthy male
- Progressive, painless weakness of left hand (x 12 months)
- No sensory symptoms
- Exam: Muscle wasting: left hypothenar & thenar eminence, FDI

<table>
<thead>
<tr>
<th></th>
<th>Deltoid</th>
<th>Infraspin</th>
<th>Biceps</th>
<th>Triceps</th>
<th>WE</th>
<th>WF</th>
<th>EDC</th>
<th>EIP</th>
<th>EPB</th>
<th>FPL</th>
<th>APB</th>
<th>FDI</th>
<th>ADM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>5</td>
</tr>
<tr>
<td>Left</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>4+</td>
<td>4</td>
<td>4</td>
<td>4+</td>
<td>4+</td>
<td>4</td>
<td>4+</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Illosoas</th>
<th>Quad</th>
<th>Hip Add</th>
<th>Ham</th>
<th>FA</th>
<th>Gast</th>
<th>TP</th>
<th>PL</th>
<th>EHL</th>
<th>Toeflex</th>
</tr>
</thead>
<tbody>
<tr>
<td>Right</td>
<td>5</td>
</tr>
<tr>
<td>Left</td>
<td>5</td>
</tr>
</tbody>
</table>
Other motor neuron disorders

Nerve conduction studies

<table>
<thead>
<tr>
<th>Sensory</th>
<th>Normal</th>
<th>Right</th>
<th>Left</th>
<th>Normal</th>
<th>Right</th>
<th>Left</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL (ms)</td>
<td><3.2</td>
<td>2.6</td>
<td>2.1</td>
<td><3.2</td>
<td>3.7</td>
<td>3.9</td>
</tr>
<tr>
<td>SNAP (mV)</td>
<td>>14.0</td>
<td>29.0</td>
<td>35.8</td>
<td>>14.0</td>
<td>12.4</td>
<td>7.9</td>
</tr>
<tr>
<td>Ulnar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>CV (m/s)</td>
<td>>50</td>
<td>56</td>
<td>55</td>
<td>>50</td>
<td>11.5</td>
<td>5.4</td>
</tr>
<tr>
<td>PL (ms)</td>
<td><3.3</td>
<td>2.0</td>
<td></td>
<td><3.4</td>
<td>2.5</td>
<td>3.0</td>
</tr>
<tr>
<td>SNAP (mV)</td>
<td>>9.0</td>
<td>25.1</td>
<td></td>
<td>>5.9</td>
<td>61</td>
<td>59</td>
</tr>
<tr>
<td>Dors Ulnar Cut</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL (ms)</td>
<td><3.3</td>
<td>1.3</td>
<td></td>
<td>>50</td>
<td>4.4</td>
<td>4.3</td>
</tr>
<tr>
<td>SNAP (mV)</td>
<td>>4.0</td>
<td>16.1</td>
<td></td>
<td>>50</td>
<td>5.4</td>
<td>3.2</td>
</tr>
<tr>
<td>Radial</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DML (ms)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PL (ms)</td>
<td><2.9</td>
<td>2.2</td>
<td></td>
<td>>50</td>
<td>63</td>
<td>50</td>
</tr>
<tr>
<td>SNAP (mV)</td>
<td>>11.0</td>
<td>38.7</td>
<td></td>
<td>>50</td>
<td>5.4</td>
<td>3.2</td>
</tr>
</tbody>
</table>

MAC						
PL (ms)	<3.3	1.3	1.7	<3.3	3.7	3.9
SNAP (mV)	>4.0	13.1	8.5	>4.0	11.5	5.4

Concentric needle EMG

<table>
<thead>
<tr>
<th>Side</th>
<th>Muscle</th>
<th>Root</th>
<th>Insert</th>
<th>Fibr</th>
<th>PSW</th>
<th>Amp</th>
<th>Dur</th>
<th>Poly</th>
<th>Recruit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Left</td>
<td>First dorsal interosseous</td>
<td>C8-T1</td>
<td>Incr</td>
<td>2+</td>
<td>Nml</td>
<td>Incr</td>
<td>Incr</td>
<td>Nml</td>
<td>2- to 3-</td>
</tr>
<tr>
<td>Left</td>
<td>Flexor carpi radialis</td>
<td>C6-C7</td>
<td>Incr</td>
<td>Nml</td>
<td>1+</td>
<td>Incr</td>
<td>Incr</td>
<td>Incr</td>
<td>1-</td>
</tr>
<tr>
<td>Left</td>
<td>Flexor pollicis longus</td>
<td>C7-C8</td>
<td>Incr</td>
<td>Nml</td>
<td>3+</td>
<td>Incr</td>
<td>Nml</td>
<td>Nml</td>
<td>1-</td>
</tr>
<tr>
<td>Left</td>
<td>Extensor digit commun</td>
<td>C7-C8</td>
<td>Incr</td>
<td>1+</td>
<td>1+</td>
<td>Incr</td>
<td>Nml</td>
<td>Nml</td>
<td>2- to 3-</td>
</tr>
<tr>
<td>Left</td>
<td>Biceps</td>
<td>C5-C6</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
</tr>
<tr>
<td>Left</td>
<td>Triceps</td>
<td>C6-C8</td>
<td>Nml</td>
<td>Nml</td>
<td>Incr</td>
<td>1+</td>
<td>Incr</td>
<td>Nml</td>
<td>1-</td>
</tr>
<tr>
<td>Right</td>
<td>First dorsal interosseous</td>
<td>C8-T1</td>
<td>Nml</td>
<td>1+</td>
<td>Nml</td>
<td>Incr</td>
<td>Incr</td>
<td>Nml</td>
<td>1-</td>
</tr>
<tr>
<td>Right</td>
<td>Abductor pollicis brevis</td>
<td>C8-T1</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Incr</td>
<td>Incr</td>
<td>Nml</td>
<td>1+</td>
</tr>
<tr>
<td>Right</td>
<td>Extensor digit commun</td>
<td>C7-C8</td>
<td>Nml</td>
<td>Nml</td>
<td>Incr</td>
<td>Incr</td>
<td>Incr</td>
<td>Nml</td>
<td>1-</td>
</tr>
<tr>
<td>Left</td>
<td>Vastus lateralis</td>
<td>L2-L4</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
</tr>
<tr>
<td>Left</td>
<td>Tibialis anterior</td>
<td>L4-L5</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
<td>Nml</td>
</tr>
</tbody>
</table>
Hirayama syndrome
Share Your Feedback

• Please use the 2019 AANEM Annual Meeting app to rate this presentation and the speaker(s).

• Your feedback helps us enhance our annual meeting to ensure we are continuing to meet your needs.
• Claiming CME
• Course and Plenary Presentations

Visit: www.aanem.org/resources

Record your attendance hours after each session or do it all at once after the meeting is complete! Credit not recorded by December 15, 2019 will not be reported to ABPN and ABPMR. The AANEM will report ALL Annual Meeting attendees’ credit to ABPN and ABPMR by December, 31, 2019.