Basics with the Experts - Basics of Nerve Conduction Study and Needle EMG

Mohammad Kian Salajegheh, MD
Chief, Neuromuscular Division and Director, EMG Laboratory
Department of Neurology, VA Boston Healthcare System
Brigham and Women’s Hospital, Harvard Medical School
Financial Disclosure

Nothing to disclose

Warning

Videotaping or taking pictures of the slides associated with this presentation is prohibited. The information on the slides is copyrighted and cannot be used without permission and author attribution.
Outline of Session

8:00-8:05 am 5 min Introduction

8:05-8:25 am 20 min Nerve Conduction Basics & Approach to Study

8:25-8:55 am 30 min Nerve Conduction Study Methods

8:55-9:25 am 30 min Needle EMG Basics and Specialized Studies

9:25-9:30 am 5 min Discussion, questions, and answers
Basics of Nerve Conduction and Approach to Study

- Speaker: M. Kian Salajegheh, MD

- Anatomy and physiology of the PNS
- Measurement of combined action potentials
- EDX changes in disease states
- Approach to the study
Upper and Lower Extremity Nerve Conduction Studies

• Speaker: Kelly G. Gwathmey, MD

• Review anatomy of nerves and their study technique
• Anomalous innervations
• Alternative studies
Specialized Studies and Basics of Needle EMG

- Speaker: Aaron Izenberg, MD
- Repetitive nerve stimulation
- Blink reflex
- Needle EMG basics
INTRODUCTION
Nerve Conduction Study & EMG

• Electrodiagnostic (EDX) studies are valuable tools for the assessment of neuromuscular disorders

• Numerous studies and various techniques are used today
 o Nerve conduction studies (NCSs)
 o Late responses (F response and H reflex)
 o Repetitive nerve stimulation (RNS)
 o Needle electromyography (EMG)
 o Specialized examination
EDX technical aspects

• Recording electrodes types
 o Ring or clamp electrodes
 o Bar or disk electrodes
 o Needle electrodes

• Recording
 o Active (G1) and reference (G2) electrodes
 • CMAP: mostly belly (G1) and tendon (G2) montage
 • SNAP: usually 3-4 cm apart
 • Needle usually concentric
EDX technical aspects

• **Grounding**
 - Obtain waveform free of artifact

• **Machine settings**
 - Gain (sensitivity)
 - Sweep speed
 - Filter settings

• **Stimulation** (red anode and black cathode)
 - Orthodromic vs. antidromic (for sensory)
 - Stimulation duration usually 0.1-0.2 ms
 - Intensity (usually supramaximal stimulation)
BASICS OF NCS AND APPROACH TO STUDY
Electrodiagnostic Studies

• **Critical tools** for the assessment of patients with neuromuscular disorders

• Mainly **extensions** of the **clinical evaluation**
 - Obtain focused **history and exam**
 - Form clinical impression with **differential Dx**
 - **Design** study NCS > Needle EMG
 - Report exam with clinical impression in mind
Nerve Anatomy & Physiology

• Knowledge of peripheral nervous system anatomy key to optimal localization (main role of EDX)

• Knowledge of nerve and muscle physiology important to determine type and timing of lesion
Peripheral Nervous System

31 pairs:
- 8 cervical
- 12 thoracic
- 5 lumbar
- 5 sacral
- 1 coccygeal
Peripheral Nervous System

Dorsal Ramus \rightarrow Paraspinal muscles

Ventral Ramus
 \rightarrow Brachial Plexus \rightarrow Peripheral Nerves
 \rightarrow Intercostal Nerves
 \rightarrow Lumbosacral Plexus \rightarrow Peripheral Nerves
Nerve & Muscle Physiology

• Axonal membrane is electrically active with resting membrane potential

• Depolarization leads to an action potential propagating in both directions away from sight of depolarization

• We record only what we stimulate and capture – importance of correct stimulation and recording sites
Combined Action Potentials (AP)

- Combined motor nerve AP (CMAP)
- Mixed nerve AP (MNAP)
- Sensory nerve AP (SNAP)

Negative deflection is upwards
Positive deflection is downwards
Combined AP - Amplitude

- **Amplitude**
 - Usually *baseline-peak* but also peak-peak
 - Reflective of
 - **SNAP** and **MNAP**: all *nerve fibers* stimulated and captured
 - **CMAP**: all *nerve fibers* stimulated and *muscle fibers* stimulated and captured

Graph:
- Stimulus
- Amplitude

Legend:
- **CMAP** - in mV
- **SNAP & MNAP** - in μV
Combined AP - Amplitude

- Amplitude reduction
 - SNAP & MNAP: loss of nerve fibers
 - CMAP: loss of motor nerve or muscle fibers or neuromuscular junction (NMJ) block

- Lesion location (after Wallerian degeneration)

Lesions proximal to the DRG not measured by the SNAP
Combined AP - Latency

- Latency (time)
 - Peak: Stimulus to first negative peak
 - Onset: Stimulus to initial negative deflection
 - Reflective of fastest conducting fibers
 - Used for calculation of conduction velocity

Conduction velocity (m/s) = \(\frac{\text{Distance}}{\text{Latency}} \)

In milliseconds (ms)
CV - CMAP vs SNAP

SNAP & MNAP: CV = Distance stimulus to recording/onset latency

CMAP: Onset latency includes NMJ and muscle conduction

A. Stimulate

B. Record

SNAP & MNAP: CV = Distance A-B / latency A-B

CMAP: CV = Distance stimulus to recording/onset latency
Combined AP - Duration

- Duration
 - Negative peak onset to first baseline crossing (i.e. negative peak duration)
 - Marker of synchrony of action potentials
 - SNAP duration typically 1.5 ms

In milliseconds (ms)
EDX Changes in NMD Disorders

- Axonal loss (NCS)
 - Reduction in amplitude
 - CMAP 3–5 days
 - SNAP 6-10 days
 - Preserved latency and CV
 - Mild reduction with loss of fastest conducting fibers (not within demyelinating range)
- Axonal loss (EMG)
 - Acute: reduced recruitment pattern
 - Subacute: appearance of membrane irritability
 - Chronic (months): large and long MUAP
EDX Changes in NMD Disorders

• Demyelination (NCS)
 o Reduced CV <75% LLN
 • ~ 35 m/s UE and 30 m/s LE
 o Prolonged latency >130% ULN
 o Preserved amplitude except for
 • Conduction block
EDX Changes in NMD Disorders

- Temporal dispersion (Increased CMAP duration)

Both conduction block and temporal dispersion are markers of acquired demyelination.

Within few days from lesion onset may be due to pseudo-conduction block (repeat study ~1 week)
EDX Changes in NMD Disorders

• Demyelination (EMG)
 o Should only show reduced recruitment pattern
 o Most lesions have some axonal damage as well

• Late responses
 o Important to look for lesions proximal to the usual sites of stimulation in motor studies
 o Evaluate the entire length of the nerve
 • F waves: motor nerve
 • H reflex: sensory and motor nerves
APPROACH TO EDX:
CLINICAL LOCALIZATION IN THE PNS
NMD Presentation

• Sensory
 ▫ Roots (dorsal)
 ▫ Dorsal sensory ganglion
 ▫ Nerve (sensory fiber)

• Motor
 ▫ Motor neuron (anterior horn)
 ▫ Roots (ventral)
 ▫ Nerve (motor fiber)
 ▫ Neuromuscular junction
 ▫ Muscle
NMD Presentation Sensorimotor

• Sensory
 ▫ Roots (dorsal)
 ▫ Dorsal sensory ganglion
 ▫ Nerve (sensory fiber)

• Motor
 ▫ Motor neuron (anterior horn)
 ▫ Roots (ventral)
 ▫ Nerve (motor fiber)
 ▫ Neuromuscular junction
 ▫ Muscle
NMD Presentation Sensorimotor

- **Radiculopathy**
 - Disc
 - Clinical
 - Radicular pain
 - Weakness in myotome, sensory change in dermatome

- **Polyradiculopathy**
 - Diffuse meningeal process
 - Clinical
 - Diffuse pain and motor/sensory change
 - May involve cranial nerves and cognition
NMD Presentation Sensorimotor

- Radiculopathy/polyradiculopathy

NCS/EMG:
- Normal SNAP (lesion central to DRG)
- Possible low CMAP amplitude (depending on level)

- Denervation in muscles sharing myotome (s)
- Denervation of parapsinal muscles
NMD Presentation Sensorimotor

• Mononeuropathies
 o Initial demyelinating: “Compressive”
 • Median at wrist “carpal tunnel syndrome”
 • Ulnar at elbow “cubital tunnel syndrome”
 • Peroneal (fibular) neuropathy at fibular head
 o Axonal
 • Traumatic
 o Clinical
 • Weakness and sensory change in distribution of a single nerve
NMD Presentation Sensorimotor

- Mononeuropathies

NCS/EMG:
- Focal demyelination and/or low SNAP and CMAP amplitude in single nerve territory

 - Denervation in muscles innervated by the nerve (if axonal)

 - Exact localization only possible with demonstration of focal demyelination
NMD Presentation Sensorimotor

• Multiple mononeuropathies
 o Demyelinating and/or axonal
 • Vasculitis “mononeuritis multiplex”
 • Infiltration (lymphoma)
 • Infection (Lyme, leprosy)
 • Granulomatous (sarcoid)
 • CIDP variants
 • Hereditary (HNPP)
 o Clinical
 • Weakness and sensory change in distribution of multiple individual nerves or asymmetric polyneuropathy (due to lesion confluence)
NMD Presentation Sensorimotor

• Generalized polyneuropathy
 o Distal symmetric length dependent sensory > motor
 • Diabetic
 • Toxic (alcohol and drugs)
 o Non-length dependent sensory < or = motor
 • Autoimmune (GBS or CIDP)
 • Hereditary
 o Clinical
 • Diffuse weakness and sensory changes
 • Look for signs of chronicity (pes cavus and hammertoes)
 • Family history important (most AD)
NMD Presentation Sensorimotor

• Generalized polyneuropathy

NCS/EMG:
- **Study enough nerves** and **muscles** to establish pattern and symmetry
- Determine axonal vs demyelinating
- If demyelinating determine hereditary vs acquired
- Consider proximal stimulation and late responses if suspicion for demyelinating

NCS and EMG are **normal** in **small fiber sensory neuropathy**

Cold nerves are slow so pay attention to limb temperature and warm them up
NMD Presentation Sensorimotor

• Plexopathies
 o Brachial
 • Brachial plexitis “Parsonage-Turner syndrome”
 • Radiation (may have myokymia)
 o Lumbosacral
 • Radiation
 • Retroperitoneal process

 o Clinical
 • May start with shoulder or hip pain
 • Diffuse weakness and sensory changes in single limb
NMD Presentation Sensorimotor

• Plexopathies

NCS/EMG:
- **Expanded study** of nerve and muscle in involved limb
- Consider **side to side** comparison
- **Myokymia** on exam and EMG suggestive of **radiation**
NMD Presentation Sensory

• Sensory
 ▫ Roots (dorsal)
 ▫ **Dorsal sensory ganglion**
 ▫ **Nerve (sensory fibers)**

• Motor
 ▫ Motor neuron (anterior horn)
 ▫ Roots (ventral)
 ▫ Nerve (motor fiber)
 ▫ Neuromuscular junction
 ▫ Muscle
NMD Presentation Sensory

• Ganglionopathy
 o Sjogren’s syndrome
 o Drugs (B6 toxicity, thalidomide)
 o Paraneoplastic (anti-Hu)
 o Autoimmune

 o Clinical
 • Non-length dependent, focal or generalized
 • All sensory modalities with severe sensory ataxia
NMD Presentation Sensory

• Ganglionopathy

NCS/EMG
- Non length dependent or asymmetric loss of SNAP amplitude
- Normal CMAP and EMG studies
NMD Presentation Motor

• Sensory
 ▫ Roots (dorsal)
 ▫ Dorsal sensory ganglion
 ▫ Nerve (sensory fiber)

• Motor
 ▫ Motor neuron (anterior horn)
 ▫ Roots (ventral)
 ▫ Nerve (motor fiber)
 ▫ Neuromuscular junction
 ▫ Muscle
NMD Presentation Motor

• Motor neuron disease
 o ALS
 o Spinal muscular atrophy (SMA)
 o Infections (polio, WNV)
 o Clinical
 • Muscle weakness and atrophy (regional, diffuse)
 • Bulbar and/or respiratory symptoms
 • Cramps and fasciculations
 • Upper motor neuron symptoms and signs in ALS
NMD Presentation Motor

• Motor neuron disease

NCS/EMG
- Normal SNAP amplitudes (usually)
- Reduced CMAP amplitude (usually asymmetric) with normal latency and CV
- Important to consider proximal stimulation and late responses if no upper motor neuron findings

- Denervation changes in muscles sharing myotome(s) and also bulbar/cranial
NMD Presentation Motor

• Neuropathy (motor fibers)
 o Demyelinating (multifocal mononeuropathy; MMN)
 o Axonal (GBS variant)
 o Hereditary

 o Clinical
 • Muscle weakness and possible atrophy
 • Distribution of multiple nerves or generalized distal>proximal (not myotomal)
NMD Presentation Motor

- Neuropathy (motor fibers)

<table>
<thead>
<tr>
<th>NCS/EMG</th>
<th>Similar to MND except for</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>- Demyelination in MMN</td>
</tr>
<tr>
<td></td>
<td>- Denervation in distribution of nerves or distal>proximal rather than myotomal</td>
</tr>
</tbody>
</table>
NMD Presentation Motor

• Neuromuscular junction disorder
 o Pre-synaptic
 • Lambert Eaton (LEMS)
 • Botulism
 o Post-synaptic
 • Myasthenia gravis

 o Clinical
 • Fluctuating and fatigable muscle weakness
 • Ocular and bulbar involvement
 • LEMS and botulism with autonomic symptoms
NMD Presentation Motor

- Neuromuscular junction disorder

NCS/EMG
- Slow repetitive nerve stimulation (RNS)
- Fast RNS for presynaptic (or check for abnormal post 10-second exercise facilitation)
- Routine NCS and needle EMG to exclude underlying muscle denervation/reinnervation or myopathy
NMD Presentation Motor

- Myopathy
 - Proximal > distal
 - Endocrine and Toxic
 - Polymyositis and dermatomyositis
 - Distal > or = proximal
 - Myotonic dystrophy type 1 and other inherited myopathies
 - Inclusion body myositis
 - Diffuse
 - ICU myopathy
 - Periodic paralysis
NMD Presentation Motor

- Myopathy
 - Clinical
 - Progressive muscle weakness and atrophy
 - Some episodic/periodic +/- triggers
 - Some with myotonia

NCS/EMG
- Normal SNAP
- Normal CMAP (unless distal myopathy)
- Myopathic units
- Membrane irritability and myotonic discharges in some (inflammatory, toxic,...)
Share Your Feedback

• Please use the 2019 AANEM Annual Meeting app to rate this presentation and the speaker(s).

• Your feedback helps us enhance our annual meeting to ensure we are continuing to meet your needs.
• Claiming CME
• Course and Plenary Presentations

Visit: www.aanem.org/resources

Record your attendance hours after each session or do it all at once after the meeting is complete! Credit not recorded by December 15, 2019 will not be reported to ABPN and ABPMR. The AANEM will report ALL Annual Meeting attendees’ credit to ABPN and ABPMR by December, 31, 2019.