ALS: Making the Diagnosis

Jennifer M. Martinez-Thompson, MD
October 18, 2019
Disclosures

• No relevant financial relationships to disclose
• No conflicts of interest
• No discussion of off-label or investigational drug use
Warning

Videotaping or taking pictures of the slides associated with this presentation is prohibited. The information on the slides is copyrighted and cannot be used without permission and author attribution.
Goals

By the end of this talk, you should be able to:

- Describe the approach to diagnosing ALS using existing clinical criteria
- Identify common electrodiagnostic (EDX) findings in ALS
- Recognize EDX findings that may prompt evaluation for mimickers
Diagnosing ALS

• Can be challenging
 o Clinical diagnosis
 o Phenotypic heterogeneity
 o Early in disease course

• Most do not meet criteria for a definite diagnosis early on
 o Limitations to existing criteria
History of ALS Diagnostic Criteria

1957: Lambert criteria published
1991: El Escorial criteria
1997: Airlie House guidelines
2000: Revised El Escorial/Airlie House criteria
2006: Awaji-Shima criteria
2010s: Continued guideline revisions (clinical trials)
Regions/segments

• **UMN signs**
 - Weakness without atrophy
 - Hyperreflexia (preserved reflexes in atrophic muscles)
 - Primitive reflexes (Babinski sign)
 - Spasticity

• **LMN signs**
 - Weakness with atrophy
 - Low or normal tone
 - Reflex loss
 - Fasciculations

Image modified from: www.clipart-library.com
Revised El Escorial Criteria

<table>
<thead>
<tr>
<th>Degree of diagnostic certainty</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definite ALS</td>
<td>UMN + LMN signs in 3 regions</td>
</tr>
<tr>
<td>Probable ALS</td>
<td>UMN + LMN signs in 2 regions (some UMN signs rostral to LMN)</td>
</tr>
<tr>
<td>Laboratory-supported probable ALS</td>
<td>UMN+ LMN signs in 1 region OR UMN in ≥ 1 region(s) + EMG evidence of active denervation in ≥ 2 segments (≥ 2 muscles of different root and nerve origin)</td>
</tr>
<tr>
<td>Possible ALS</td>
<td>UMN + LMN signs in 1 region, UMN signs only ≥ 2 regions, LMN signs rostral to UMN signs</td>
</tr>
</tbody>
</table>

Fibrillations or positive sharp waves
Awaji Criteria

<table>
<thead>
<tr>
<th>Degree of diagnostic certainty</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Definite ALS</td>
<td>UMN + LMN signs in 3 regions</td>
</tr>
<tr>
<td>Probable ALS</td>
<td>UMN + LMN signs in 2 regions (some UMN signs rostral to LMN)</td>
</tr>
<tr>
<td>Possible ALS</td>
<td>UMN + LMN signs in 1 region UMN signs only ≥ 2 regions LMN signs rostral to UMN signs</td>
</tr>
</tbody>
</table>

- Includes both clinical and EMG findings
- Active denervation
 - Fibrillations or positive sharp waves
 - Fasciculations with chronic neurogenic changes
- Literature suggests helpful in bulbar-onset ALS for earlier diagnosis
Why perform EMG/NCS?

• Confirm extent of lower motor neuron involvement

• Exclude ALS mimickers
 o Motor-predominant neuropathies (CIDP, MMN)
 o Inclusion body myositis
 o BFS or CFS
 o Other motor neuron diseases (need clinical context)
 • SMA, SBMA, PLS, PBP
Common EMG/NCS Changes
Fibrillations
Positive sharp waves
Fasciculations
Reinnervation
MUP instability
MUP complexity
Long, tall MUPs
Satellite potentials
Reduced recruitment
NCS in ALS

• **Sensory NCS** usually normal

• **Motor NCS** normal early on
 - Slow, progressive motor axon loss + compensatory reinnervation
 - CMAP amplitude drops once # of functioning motor units are ~50% normal *(later finding)*
 - Distal latencies and conduction velocities normal until amplitudes are very low
Motor NCS in ALS (con’t)

• **F-waves** usually **normal**
 - May be absent if CMAP amplitude very low
 - F-wave persistence or decreased variability
 - F-wave latency should not be prolonged relative to F-estimate (think of proximal slowing)

• May need to exclude proximal conduction block
 - Beware of pseudo-conduction block
R**eptitive stimulation (NCS)**

- Decrement has been reported in up to 50% of patients with ALS

- Typically $< 10\%$ with baseline 2-Hz repetitive stimulation

- Can partially repair with brief exercise and worsen several minutes after exercise
Sounds of EMG in ALS
Spontaneous activity
Voluntary activation
Temporal EMG/NCS Changes

Within single muscle:

Early
- Reduced recruitment
- MUP instability
- Fibrillations

Late
- Low CMAP amplitude
- F-wave persistence or loss

MUP complexity
- Large MUPs

Fibrillations
Approach to EMG/NCS
NCS

If weakness isolated to lower limb:
- Peroneal (EDB) + F-wave
- Tibial (AH) + F-wave
- Sural sensory

If weakness isolated to upper limb:
- Ulnar (ADM) + F-wave
 - Consider 4-point or proximal stimulation if LMN findings only on exam
- Median (APB) + F-wave
- Ulnar and median antidromic sensory

If weakness generalized:
- Peroneal (EDB) + F-wave
- Sural sensory
- Ulnar (ADM) + F-wave
- Median antidromic sensory
Needle EMG

- In obvious cases, may only need to do enough to show the process is diffuse

- Sample several muscles in each segment
 - Different root and nerve contribution
 - Relaxed muscle to assess for fasciculations
 - Distal/weak muscles higher yield

- If bulbar-onset may need to do cranial nerve-innervated muscles
 - Masseter, genioglossus, orbicularis oris

- Bulbar (if needed)
- Cervical (3 muscles) FDI, Biceps, Triceps
- Thoracic paraspinals (2 levels) Lumbosacral (3 muscles) TA, MG, VM
When to think about mimickers...

NCS
- True proximal conduction block on motor NCS
- Absent or prolonged F-waves with near normal motor amplitudes
- Prominent distal latency and conduction velocity abnormalities on motor NCS
- Sensory NCS abnormalities without pre-existing *peripheral neuropathy* or mononeuropathies

Needle EMG
- Absence of fasciculation potentials
- Large MUP of simple morphology
- Normal MUP (*UMN syndrome, BFS/CFS*)

Motor-predominant/demyelinating neuropathies

MMN (conduction block)

Kennedy's disease (SBMA)
Take-home points

- Making the diagnosis of ALS can be challenging
 - Requires combination of clinical and EDX findings
 - Revised El Escorial criteria used clinically
- EMG/NCS can:
 - Confirm extent of lower motor neuron involvement
 - Exclude ALS mimickers
- Standard NCS are typically normal with low CMAP amplitudes later in the disease
- Needle EMG shows
 - Fasciculations, fibrillations
 - Long duration, high amplitude, unstable, complex MUP with reduced recruitment

EMG/NCS can:
- Confirm extent of lower motor neuron involvement
- Exclude ALS mimickers
Share Your Feedback

• Please use the 2019 AANEM Annual Meeting app to rate this presentation and the speaker(s).

• Your feedback helps us enhance our annual meeting to ensure we are continuing to meet your needs.
• Claiming CME
• Course and Plenary Presentations

Visit: www.aanem.org/resources

Record your attendance hours after each session or do it all at once after the meeting is complete! Credit not recorded by December 15, 2019 will not be reported to ABPN and ABPMR. The AANEM will report ALL Annual Meeting attendees’ credit to ABPN and ABPMR by December, 31, 2019.