Peripheral Autonomic Disorders

Steven Vernino MD PhD
Neurology & Neurotherapeutics, UT Southwestern, Dallas, TX
Warning

Videotaping or taking pictures of the slides associated with this presentation is prohibited. The information on the slides is copyrighted and cannot be used without permission and author attribution.
Financial Disclosure

• No Relevant Financial Relationships to disclose

• Research support from Genentech, Grifols, Athena/Quest, BioHaven and Dysautonomia International related to study and treatment of autoimmune encephalitis, POTS and Multiple System Atrophy
Peripheral Autonomic Nervous System

- Nerves
- Autonomic Ganglia
- Autonomic Neurons
- Enteric Nervous System

Diagram:
- Preganglionic neurons
- Parasympathetic (ciliary or cardiac ganglia)
- Long parasympathetic preganglionic axons
- Long sympathetic postganglionic axons
- Sympathetic (superior cervical ganglia)
- Heart
- Sweat
- Pupil
- Blood vessels
- Heart
Case 1

• 40 yo obese woman presents with excessive sweating, lightheadedness and burning feet
• Also has N/V, 60 min after eating
• Nerve conduction and EMG are normal

• Neuro exam: Reduced reflexes, Loss of sensation to pin up to ankles. Feet are dry
• Lab work shows fasting glucose of 300

Diagnosis: Small fiber sensory and autonomic neuropathy (diabetes or glucose intolerance)
Peripheral autonomic neuropathy

- Small fiber neuropathies
 - Postganglionic autonomic fibers are C fibers
 - Pain and temperature axons are C fibers (or Aδ)
 - Not evaluated by nerve conduction study or EMG
 - Evaluate with autonomic testing or skin biopsy
Case 1 - Autonomic testing

- Loss of distal sweat (QSART) responses
- Impaired heart rate variability (cardiovagal)
- Impaired BP response to Valsalva

Supine 150/90, HR 70
70° tilt, 1’ 140/85, HR 70
70° tilt, 3’ 120/75, HR 72
70° tilt, 5’ 115/72, HR 73 (lightheaded)

Peripheral autonomic neuropathy (PAN)
Length-dependent small fiber autonomic & sensory impairment
Small fiber assessment - Skin biopsy

IntraEpidermal Nerve Fiber Density:
10-20 fibers / mm

Assessment of C fibers
- Intraepidermal sensory
- Sympathetic pilomotor
- Sympathetic sudomotor
Diabetic autonomic neuropathy

- **Diabetic PAN**
 - 14-35% with diabetic neuropathy have autonomic deficits
 - Impotence, constipation, gastroparesis, OH
 - 20-30% with GI involvement (nausea, early satiety, diarrhea)
 - Isolated diabetic dysmotility (gastroparesis) can occur
 - Cardiovascular impairment precedes OH
 - Compensatory hyperhidrosis of head and chest
 - Severe autonomic neuropathy (5%) associated with higher mortality & cardiovascular morbidity
 - Pupil may be affected (even in absence of diabetic eye disease)

- **Risk factors for more severe diabetic PAN:**
 - High A1c, type 2, duration of diabetes
 - Hypertension, Smoking, BMI, older age, cholesterol, triglycerides
Differential diagnosis of chronic PAN

• Small fiber neuropathy with prominent autonomic features
 o Diabetes (or pre-diabetes metabolic syndrome)
 o Amyloidosis (TTR, myeloma)
 o Familial dysautonomia (HSAN III) – rare, childhood onset

• Small fiber sensory > autonomic
 o Other HSAN, Fabry, Tangier
 o Sjogren (and other immune-mediated)
 o Infectious (HIV, Leprosy, botulism)
 o Nutritional deficiencies & alcohol
 o Idiopathic

• Aging
 o Reduced BRS, reduction in gut innervation (constipation), sexual dysfunction

• Other restricted peripheral autonomic dysfunction
 o Chronic idiopathic anhidrosis, Adie syndrome, Ross syndrome

• Rare inherited autonomic disorders
 o AAA syndrome
 o Dopamine ß hydroxylase deficiency
 o Hirschsprung
 o Cold-induced sweating
Case 1 – diabetic PAN

- Poorly controlled diabetes Hgb A1C – 12.5%
- Starts insulin with aggressive blood sugar control
- Weight loss and exercise

- Returns in 6 weeks with worse symptoms
- Severe burning pain in hands and feet
- Marked increase in pain and allodynia
- More orthostatic lightheadedness
- Insomnia
- HbA1C – 7.5%
Treatment –induced neuropathy of diabetes (TIND)

• a.k.a. “insulin neuritis”
• Acute pain +/- autonomic within 8 wks of markedly improved glycemic control

• 80% risk if ↓HbA1c > 4% in 3 mo
• 4.3% risk if ↓HbA1c < 2% over 3 mo
Case 2

• 50 yo man with 5 years of orthostatic lightheadedness, alternating constipation/diarrhea, dyspnea on exertion & reduced sensation/sweating in the feet

• Distal small fiber sensory loss, OH, sluggish pupil responses

• NCS - peripheral axonal neuropathy and bilateral CTS

• Normal glucose, A1c, SPEP/IEP. Elevated NT pro-BNP

Diagnosis: Progressive sensory and autonomic neuropathy
Suspicious for a myloid neuropathy

Genetic analysis - Thr60Ala mutation in TTR gene
Amyloidosis

Deposition of protein aggregate fibrils in tissues (muscle, nerve, vessels)
• Small fiber predominant sensory neuropathy
• Autonomic: OH, Hypohidrosis, Bladder and GI dysmotility, Impotence
• Carpal tunnel syndrome in 25%, loss of taste, Cardiomyopathy (or skeletal myopathy)

Acquired amyloidosis
• Paraproteinemia λ light chains: AL type
• κ light chains: Multiple myeloma; MGUS

Familial amyloid polyneuropathy
• Most common type – mutations in transthyretin (autosomal dominant)
• Most common point mutation: Val30Met – autonomic symptoms less common
• Other mutations (including Thr60Ala) – common autonomic symptoms
• Treatment of FAP:
 o Liver transplantation
 o TTR stabilizers (Diflusinal or Tafamidis) – slow neuropathy progression
 o TTR gene silencing drugs (Patisiran or Inotersen)
Case 3

- 60 yo woman has onset over 2 weeks of nausea and vomiting after meals, severe constipation, dry mouth, trouble passing urine & dimming of vision upon standing
- She is healthy except for 25 py smoking
- Neuro exam - normal except slow pupil light reaction
- Nerve conduction and EMG are normal
- Supine BP 114/74 HR 64
- Standing BP 74/60 HR 64

Diagnosis: Subacute autoimmune (or paraneoplastic) autonomic ganglionopathy
Acute/subacute PAN / ganglionopathy

- Autoimmune Autonomic Ganglionopathy (AAG)
- Paraneoplastic autonomic neuronopathy
- Inflammatory sensory and autonomic neuropathy
- Acute cholinergic neuropathy
- Botulism
- Toxic neuropathies
 - Organic solvents
 - Heavy metals
 - Acrylamide
 - Amiodarone
 - Cisplatin, vincristine, taxol
Autoimmune Autonomic Ganglionopathy

- Age ~55 (22-82 years), 65% women
- Marked OH and GI hypomotility (severe constipation) are usual chief complaints (about 70%)
- Urine retention, ↓ pupil constriction in more severe cases
- Neuropathic sx (tingling) in extremities in 25%, normal sensation and NCS
- Severe autonomic failure on autonomic testing
- Low plasma norepinephrine
- 50% have ganglionic AChR antibodies (high titer)
- Orthostatic tachycardia without hypotension is NOT AAG
- AAG is rare!
- May improve with immunotherapy

Suárez et al. Neurology, 1994
Vernino et al. Autonomic Neurosci., 2001
Ganglionic AChR antibodies

Upper limit 0.05 nmol/L
Clinical significance 0.2 nmol/L

McKeon et al. Arch Neurol 2009
Li et al. Muscle Nerve 2015

Vernino et al. NEJM 2000
Paraneoplastic autonomic neur(on)opathy

- With lung cancer (usually SCLC)
 - ANNA-1 (anti-Hu) antibody – less commonly CRMP-5

- Enteric neuropathy
 - Gastroparesis & intestinal hypomotility is very prominent
 - Nausea/vomiting/weight loss may be dismissed by oncologist

- Autonomic ganglionopathy
 - Sympathetic failure also present (OH)
 - Similar to AAG but less pupil/bladder involvement
 - Often have associated sensory neuronopathy (or limbic encephalitis)

- Cancer treatment / immunotherapy – modest benefits
“Seronegative AAG”

- A challenging scenario – several variants
- Subacute onset of GI dysmotility and OH
- Usually less cholinergic (sicca, pupil)
- gAChR and paraneoplastic Abs negative
- Pain and small fiber neuropathy in some cases
 - sensory and autonomic neuropathy
- Some respond to high dose steroids, even if IVIG and PLEX do not work

Iodice et al. Neurol, 2009
Golden et al. JCNMD, 2016
Other immune-mediated autonomic neuropathies

• Autonomic dysfunction with small fiber neuropathies
• Sicca or Sjogren syndrome
 o 20% of SS patients have neuropathy
 o Autonomic symptoms common (with sensory neuropathy)
 o Mixed pattern of autonomic deficits:
 • cholinergic deficits predominate (GI, pupil, anhidrosis, tachycardia)
 o Very rare patients have severe autonomic failure
 o Treatment often ineffective

Wright et al. J Auto Nerv Sys, 1999
Mori et al. Brain, 2005
Birnbaum. Neu`rologist, 2010
Peripheral autonomic disorders

Summary points

• Autonomic fiber involvement in small fiber neuropathies
 o Prominent autonomic features may guide diagnosis

• Autonomic ganglia may be target of autoimmunity
 o Interpret gAChR antibodies with caution

• Enteric autonomic nerves may be involved
 o Neurologists can ask about constipation

• Differentiate subacute from chronic etiologies
 o Some disorders are treatable
Share Your Feedback

• Please use the 2019 AANEM Annual Meeting app to rate this presentation and the speaker(s).

• Your feedback helps us enhance our annual meeting to ensure we are continuing to meet your needs.
• Claiming CME
• Course and Plenary Presentations

Visit: www.aanem.org/resources

Record your attendance hours after each session or do it all at once after the meeting is complete! Credit not recorded by December 15, 2019 will not be reported to ABPN and ABPMR. The AANEM will report ALL Annual Meeting attendees’ credit to ABPN and ABPMR by December, 31, 2019.