Electrodiagnostic Criteria of Demyelination

Shawn J. Bird, M.D.
Professor of Neurology, University of Pennsylvania
Financial Disclosure

• Clinical trial support Alexion Pharmaceuticals
• Clinical trial support NeuroNext
Warning

Videotaping or taking pictures of the slides associated with this presentation is prohibited. The information on the slides is copyrighted and cannot be used without permission and author attribution.
NCS: axonal or demyelinating?
Features of axonal loss

- Reduced motor (CMAP) and sensory (SNAP) amplitudes

- Conduction velocity (CV) may be reduced due to the loss of the fastest conducting fibers

- CV will not fall below 70-75% the lower limit of normal – does not reach the “demyelinating range”
Features of axonal loss

• Other measures of motor CV are minimally affected, even with severe axonal loss

 Distal motor latency (remains < 150% ULN)

 F wave latency (remains < 130% ULN)

• No conduction block or abnormal temporal dispersion

ULN = upper limit of normal
Features of axonal loss

These features of axonal loss may be seen in:

• axonal neuropathies, nerve trauma, etc
• motor neuron disorders and radiculopathies (motor amplitudes only)
• as well as a secondary, or “bystander,” effect in primary demyelinating neuropathies
 o although demyelinating neuropathies often have features of axonal loss, axonal neuropathies do not have features of primary demyelination
Axonal or demyelinating?
Important considerations

• The diagnostic approach to most neuropathies depends on reliably identifying demyelination on NCS
• Demyelinating neuropathies also have axonal loss
• All slowing of conduction velocity is not evidence of demyelination
• Absence of demyelination on NCS does not exclude the possibility of demyelination as the primary process (e.g., the sensitivity of NCS in confirming demyelination in CIDP is about 80-85%)
Demyelination on NCS

• Demyelination – two independent markers

 (1) **Substantial** changes in measures of conduction velocity (CV)
 • Conduction velocity slowing (motor)
 • Prolonged distal motor latencies
 • Prolonged F wave latencies

 (2) Conduction block and/or **abnormal** temporal dispersion
Features of demyelination: conduction velocity (CV)

• In vivo and in vitro studies clearly show that substantial slowing of CV is always due to segmental demyelination*

• Suggested criteria for demyelination in chronic neuropathy
 (2010 PNS/EFNS consensus criteria)

 o Motor CV < 70% LLN
 o DML > 150% ULN
 o F wave latencies > 130% ULN
 (or > 150% if CMAP amplitude < 80% LLN)

DML = distal motor latency
LLN = lower limit of normal
ULN = upper limit of normal
Features of demyelination: conduction block (CB)

- Partial conduction block (CB) - amplitude or area of the proximal response is significantly smaller than the distal response, without an increase in the response duration

- CB reflects the block of conduction through a subset of motor axons in the nerve due to segmental demyelination
Normal motor study

Example: conduction block

Distal Stimulation (wrist)

Proximal Stimulation (elbow)
Suggested criteria for CB

- Definite in any nerve
 - >50% drop in CMAP amplitude
 - >50% drop in CMAP area
Normal nerve
Segmental Demyelination
Temporal dispersion (TD)

- TD is reflected in the duration of the motor response (defined from the onset of the first negative peak to the end of the last negative component of the CMAP).

- Reflects the desynchronization of components of the response due to different conduction velocities along the length of the nerve between the point of stimulation and the recording electrode.
Temporal dispersion

- TD may be physiologic, as occurs along the length of a nerve in normal individuals.

- TD is more substantial when there is an increased range of conduction velocities due to demyelination.

- Abnormal temporal dispersion is due to demyelination – results in a greater than 30% increase in duration (comparing the proximal CMAP to the distal CMAP).
START
CMAP dispersion in CIDP/AIDP
Conduction block and abnormal temporal dispersion

- **Definite conduction block** = > 50% drop in CMAP amplitude

- **Abnormal temporal dispersion** = greater than a 30% increase in proximal CMAP duration compared to the distal CMAP

- **Both** abnormal TD and the presence of CB reflect the presence of primary demyelination!
First of a series of pleas from CIDP experts to:

1. Improve the diagnostic accuracy – immunotherapy will fail if the diagnosis is wrong

2. Use objective measures to assess treatment effect
• 36 of 86 (42%) of patients previously diagnosed with CIDP did not have CIDP – per 2010 EFNS/PNS criteria for NCS/EMG

• Most studies were interpreted as demyelinating, often as a “mixed demyelinating-axonal neuropathy”
 o Often due to moderate slowing of conduction due to axonal loss
 • Conduction velocity (CV) may be reduced due to the loss of the fastest conducting motor axons in an axonal neuropathy
 • For example, ulnar motor CV of 40 m/s or peroneal motor CV of 30 m/s
 o Focal demyelination at compression sites

These 36 misdiagnosed patients had clinical features atypical for CIDP, no or mild elevation of CSF protein (< 100 mg/dl), or a subjective response to treatment.
Suggested criteria for the diagnosis of CIDP

- **2010 EFNS/PNS criteria** - consensus among CIDP experts: the best sensitivity (85%) and specificity (>95%)

 At least one:

 Measures of conduction velocity

 Conduction velocity

 CV < 70% LLN (e.g., < 35 m/s UE and < 28 m/s LE nerves) in 2 nerves

 Distal motor latency

 DML > 150% ULN (e.g., ulnar > 4.9 msec) in 2 nerves

 F wave latencies

 F wave latencies > 120% ULN in 2 nerves, or > 150% ULN if the amplitude of the distal CMAP is < 80% LLN

 Absence of F-waves in 2 nerves, if nerves have distal CMAP amplitudes of > 20% LLN, plus at least 1 other demyelinating parameter in at least 1 other nerve
Suggested criteria for the diagnosis of CIDP

At least one:

Measures of conduction block or abnormal temporal dispersion

Partial motor conduction block
>50% drop in amplitude of the proximal CMAP compared to the distal CMAP (if distal CMAP is > 20% LLN) in 2 nerves; or in 1 nerve and at least one other demyelinating parameter in another nerve

Abnormal temporal dispersion
>30% increase in the CMAP duration between proximal and distal sites, in at least 2 nerves

Distal CMAP negative peak durations
Distal CMAP duration > ULN in at least 1 nerve (e.g., ulnar > 6.7 msec; peroneal > 7.6 msec) plus at least 1 other demyelinating feature in at least 1 other nerve

Does using electrodiagnostic criteria fall short?

• No – not when used properly

• Recognize that 1 in 7 patients with CIDP will not meet the electrodiagnostic criteria on the initial study (repeat the study!)

• With no evidence of CIDP on the NCS, when to suspect it:
 o Patterns on the clinical examination of typical CIDP
 • Proximal = or > distal weakness
 • Motor >> sensory
 o Other patterns on exam
 • Prominent ataxia (consider sensory neuronopathies)
 • Patchy involvement like multiple mononeuropathies (consider vasculitis)
 o CSF protein > 100 mg/dl
 o Rapid progression (consider vasculitis and amyloid)
Share Your Feedback

• Please use the 2019 AANEM Annual Meeting app to rate this presentation and the speaker(s).

• Your feedback helps us enhance our annual meeting to ensure we are continuing to meet your needs.
• Claiming CME
• Course and Plenary Presentations

Visit: www.aanem.org/resources

Record your attendance hours after each session or do it all at once after the meeting is complete! Credit not recorded by December 15, 2019 will not be reported to ABPN and ABPMR. The AANEM will report ALL Annual Meeting attendees’ credit to ABPN and ABPMR by December, 31, 2019.