Recent Highlights in Peripheral Nerve

Michelle L. Mauermann MD
Associate Professor of Neurology
Mayo Clinic, Rochester MN
Financial Disclosure

• Receive research support from IONIS and Alnylam
Warning

Videotaping or taking pictures of the slides associated with this presentation is prohibited. The information on the slides is copyrighted and cannot be used without permission and author attribution.
Outline

• Advances in Peripheral Neuropathy
 o “CIDP” variants
 o CANVAS, CMT, ATTRv Amyloid

• Treatment Trials for Peripheral Neuropathies
 o ATTRv Amyloid
 o GBS
 o CIDP
Advances in “CIDP” ...
Clinical Phenotypes of CIDP

Bonschoten C et al, Lancet Neurology 18:2019
The node of Ranvier

IgG4 Antibodies to Nodal and Paranodal proteins

• CIDP-like disease with a different pathogenesis
 o IgG4 antibodies have a low capacity to bind to FcγIIb-receptors, cannot activate complement, and are considered anti-inflammatory

• Occur in about 10% of CIDP with atypical phenotypes and impaired response to standard treatments

• Paranodal: NF155, Contactin1, CASPR1 (contactin associated protein-1)

• Nodal: NF140 and 186

• Patients with IgG4 antibodies may not respond sufficiently to standard CIDP treatment but can show remarkable improvement with rituximab

• ? IgM antibodies to NF155 and NF186

Bonschoten C et al, Lancet Neurology 18:2019
Antibodies to Neurofascin

Neurofascin 155
- Subacute severe onset
- Motor > sensory
- Sensory ataxia
- Young age of onset
- Tremor
- Distal predominant
- CNS (ataxia/nystagmus/demyelination)
- High CSF protein/papilledema
- Poor response to IVIG
- Partial response to corticosteroids
- Good response to PLEX or rituximab

Neurofascin 140/186
- Subacute severe onset
- Motor and sensory
- Sensory ataxia
- Nephrotic syndrome/retroperitoneal fibrosis
- Cranial neuropathies can occur
- Respiratory involvement
- Conduction blocks
- Partial response to IVIG
- Partial response to corticosteroids
- Good response to rituximab

Bonschoten C et al, Lancet Neurology 18:2019
Delmont et al, Brain 18:2019
Comparison of IgG$_4$ 140/186 vs 155

Table 2: Comparison of clinical features of patients with anti-Nfasc140/186 IgG or anti-Nfasc155 and of seronegative CIDP patients

<table>
<thead>
<tr>
<th></th>
<th>Anti-Nfasc140/186 IgG</th>
<th>Anti-Nfasc155 IgG$_4^*$</th>
<th>Seronegative</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number</td>
<td>5</td>
<td>74</td>
<td>76</td>
</tr>
<tr>
<td>Age in years, median (range)</td>
<td>61 (2-70)</td>
<td>29 (10-76)</td>
<td>58 (22-82)</td>
</tr>
<tr>
<td>Sex, male, n (%)</td>
<td>3 (60)</td>
<td>48 (69)</td>
<td>30 (39)</td>
</tr>
<tr>
<td>Subacute onset, n (%)</td>
<td>4 (80)a</td>
<td>13/55 (24)</td>
<td>4 (5)</td>
</tr>
<tr>
<td>Sensory ataxia, n (%)</td>
<td>4 (80)</td>
<td>45/70 (64)a</td>
<td>29 (38)</td>
</tr>
<tr>
<td>Tremor, n (%)</td>
<td>0</td>
<td>31/70 (44)a</td>
<td>14 (18)</td>
</tr>
<tr>
<td>Cranial nerve involvement, n (%)</td>
<td>2 (40)</td>
<td>7/32 (22)</td>
<td>7 (9)</td>
</tr>
<tr>
<td>CNS demyelination, n (%)</td>
<td>0</td>
<td>7/70 (10%)</td>
<td>0</td>
</tr>
<tr>
<td>Modified Rankin scale, median (range)</td>
<td>4 (4-5)a</td>
<td>3 (1-5)</td>
<td>2 (0-5)</td>
</tr>
<tr>
<td>Good response, n (%)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IVIG</td>
<td>3/4 (75)</td>
<td>16/70 (23)a</td>
<td>48/60 (80)</td>
</tr>
<tr>
<td>Steroids</td>
<td>3/4 (75)</td>
<td>34/70 (49)</td>
<td>19/27 (70)</td>
</tr>
</tbody>
</table>

aTaken from Ng et al, 2012; Querol et al, 2014; Ogata et al, 2015b; Devaux et al, 2016; Kadoya et al, 2016.

bP < 0.001 as compared to seronegative CIDP patients.
Antibodies to Contactin/CASPR1

Contactin 1
- Subacute severe onset
- Young age of onset
- Motor > sensory (GBS)
- Sensory ataxia
- Tremor
- Proximal and distal
- High CSF protein
- Conduction blocks
- Poor response to IVIG
- Partial response to corticosteroids
- Good response to PLEX or rituximab

CASPR1
- Subacute severe onset
- Motor > sensory (GBS)
- Neuropathic pain
- Distal > proximal
- Poor response to IVIG
- Good response to rituximab

Bonschoten C et al, Lancet Neurology 18:2019
Doppler K et al, Brain 139:2016.
Advances in Hereditary Neuropathies
Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia

- CANVAS - cerebellar ataxia, neuropathy, vestibular areflexia syndrome
 - RFC1 – recessive AAGGG repeat expansion in intron 2, cause of familial CANVAS in 23 pts
 - Also screened 150 patients with late-onset ataxia and found 33 sporadic cases
 - 63% positive if late-onset cerebellar ataxia and sensory neuronopathy
 - 92% if full syndrome (with vestibular areflexia)
<table>
<thead>
<tr>
<th></th>
<th>Familial cases ($n = 23$)</th>
<th>Sporadic cases ($n = 33$)</th>
<th>All cases ($n = 56$)</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Male</td>
<td>12 (52%)</td>
<td>15 (45%)</td>
<td>27 (48%)</td>
<td>NS</td>
</tr>
<tr>
<td>Age at onset</td>
<td>53 ± 8</td>
<td>54 ± 10</td>
<td>54 ± 9</td>
<td>NS</td>
</tr>
<tr>
<td>Disease duration at exam</td>
<td>13 ± 9</td>
<td>10 ± 6</td>
<td>11 ± 7</td>
<td>NS</td>
</tr>
<tr>
<td>Sensory neuropathy</td>
<td>23 (100%)</td>
<td>33 (100%)</td>
<td>56 (100%)</td>
<td>NS</td>
</tr>
<tr>
<td>Cerebellar syndrome</td>
<td>18 (78%)</td>
<td>27 (82%)</td>
<td>45 (80%)</td>
<td>NS</td>
</tr>
<tr>
<td>Bilateral vestibular impairment</td>
<td>17 (74%)</td>
<td>13 (39%)</td>
<td>30 (53%)</td>
<td>0.01</td>
</tr>
<tr>
<td>Dysautonomia</td>
<td>4 (17%)</td>
<td>9 (27%)</td>
<td>13 (23%)</td>
<td>NS</td>
</tr>
<tr>
<td>Cough</td>
<td>7 (30%)</td>
<td>14 (42%)</td>
<td>21 (37%)</td>
<td>NS</td>
</tr>
<tr>
<td>SAP upper limbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced</td>
<td>6/21 (29%)</td>
<td>4/31 (13%)</td>
<td>10/52 (19%)</td>
<td>NS</td>
</tr>
<tr>
<td>Absent</td>
<td>15/21 (71%)</td>
<td>27/31 (87%)</td>
<td>42/52 (81%)</td>
<td>NS</td>
</tr>
<tr>
<td>SAP lower limbs</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Reduced</td>
<td>2/21 (10%)</td>
<td>1/31 (3%)</td>
<td>3/52 (6%)</td>
<td>NS</td>
</tr>
<tr>
<td>Absent</td>
<td>19/21 (90%)</td>
<td>30/31 (97%)</td>
<td>49/52 (94%)</td>
<td>NS</td>
</tr>
<tr>
<td>Normal motor conduction</td>
<td>19/21 (90%)</td>
<td>26/31 (84%)</td>
<td>45/52 (87%)</td>
<td>NS</td>
</tr>
<tr>
<td>Cerebellar atrophy at CT/MRI scan</td>
<td>14/17 (82%)</td>
<td>21/25 (84%)</td>
<td>35/42 (83%)</td>
<td>NS</td>
</tr>
<tr>
<td>Full-blown CANVAS syndrome</td>
<td>15 (65%)</td>
<td>11 (33%)</td>
<td>26 (46%)</td>
<td>0.02</td>
</tr>
</tbody>
</table>

NS, not significant; SAP, sensory action potential.
ATP1A1 encodes alpha1 subunit of Na, K ATPase and missense mutations associated in loss of function defect

- 7 families from 4 continents
- Distal leg and arm weakness with normal proximal strength
- Reduced vibratory sensation in the legs and some hands
- Age of onset varied from childhood to adult even within the same family
- Pes cavus
• Recessive mutation in mitochondrial copper – binding protein SCO2 (COX assembly protein) → fatal infantile cardioencephalomyopathy with COX deficiency
• Compound heterozygotes in SCO2 → axonal polyneuropathy (CMT4)
• Motor neuropathy – prox/distal, cranial
• Not yet developed cardiomyopathy
• Lived past infancy
ATTRv Amyloidosis

- **Autosomal Dominant**
 - Most affected are heterozygous
- **>130 different mutations – most single nucleotide substitution**
- **Variant TTR is in blood at birth**
 - Doesn’t form amyloid until adulthood
- **Most common mutation Val30Met**
 - Accounts for 50% of TTR-FAP mutations
 - Portugal, Sweden, Italy, Cyprus, Majorca

![Diagram showing various factors affecting Phenotypic Variability in ATTRv Amyloidosis](https://via.placeholder.com/150)
Familial amyloid polyneuropathy

<table>
<thead>
<tr>
<th>Endemic</th>
<th>Nonendemic and Sweden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onset < 40 years</td>
<td>Onset > 50 years</td>
</tr>
<tr>
<td>LD small fiber sensory motor neuropathy</td>
<td>Neuropathy affects all fibers and may mimic CIDP</td>
</tr>
<tr>
<td>Life-threatening autonomic dysfunction</td>
<td>Mild autonomic symptoms</td>
</tr>
<tr>
<td>Cachexia and death within 10.8 years</td>
<td>Late onset has more severe course</td>
</tr>
<tr>
<td>Cardiac, renal and ocular involvement</td>
<td>More variability due to genetic heterogeneity</td>
</tr>
</tbody>
</table>
Improvement in diagnosis of ATTRv cardiac amyloid – Radionuclide bone scintigraphy

- Radionuclide bone scintigraphy with technetium-labeled bisphosphonates (DPD, PYP, HMDP) localize to cardiac amyloid deposits
- Graded by degree of uptake
 - Grade 1 = mild uptake less than bone
 - Grade 2 = moderate uptake equal to bone
 - Grade 3 = high uptake greater than bone

Gillmore et al, Circulation 2016
Sensitivity and Specificity of Radionuclide ‘Bone’ Scintigraphy Compared with EMB Histology

<table>
<thead>
<tr>
<th></th>
<th>Positive Scan (Grade 1, 2, or 3), n</th>
<th>Negative Scan (Grade 0), n</th>
<th>Sensitivity and Specificity (CI), %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cardiac amyloid deposits</td>
<td>289</td>
<td>38</td>
<td>88 (84-92) sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No cardiac amyloid deposits</td>
<td>6</td>
<td>41</td>
<td>87 (73-95) specific</td>
</tr>
<tr>
<td>Cardiac ATTR amyloid deposits</td>
<td>259</td>
<td>2</td>
<td>>99 (97-100) sensitive</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No cardiac ATTR amyloid deposits</td>
<td>36</td>
<td>77</td>
<td>68 (59-77) specific</td>
</tr>
</tbody>
</table>

When combining grade 2 or 3 cardiac uptake and absence of monoclonal protein, specificity increased to 100% for cardiac ATTR amyloid

Gillmore et al, Circulation 2016
Utility of Skin Biopsy for ATTRv Diagnosis

- 72 patients
- 30 with genetically confirmed ATTRv
 - 20/32 had TTR-FAP
 - 10/32 normal exams
- 20 with healthy controls
- 20 diabetic PN
- 2 with MM/AL amyloid

- 70% of TTR-FAP patients showed positive amyloid deposits
- 2 AL patients were positive
- 2/10 TTR-noPN were positive

Clinical Trials in Peripheral Neuropathy

ATTRv Amyloid
New Treatments for ATTRv FAP

Elimination of source of TTR variants:
- Liver transplantation
- Gene silencing
 - Antisense oligonucleotides - Inotersen
 - Small interfering RNA - Patisiran

Tetramer stabilization:
- Diflunisal
- Tafamidis

Reduction of TTR deposits in tissue:
- Doxycycline
- TUDCA

Enhanced clearance of amyloid deposits:
- Anti-SAP mAb

TTR monomers → Misfolding → Aggregation → TTR amyloid

Liver production and secretion into the blood

Stabilized TTR tetramer
Assessment of Neuropathy in TTR FAP: Comparison of Neuropathy Impairment Scores

NIS (244 points)
- Sensation (32)
- Reflexes (20)

NIS-LL (88 points)
- Sensation (16)
- Reflexes (8)
- Motor strength/weakness (192)

NIS+7 (270 points)
- Sensation (32)
- Reflexes (20)
- Motor strength/weakness (192)

mNIS+7Alyxiam (304 points)
- Motor strength/weakness (192)

mNIS+7lonis (346.3 points)
- Motor strength/weakness (192)

BP, blood pressure; VDT, vibration detection threshold
Inotersen

- Once weekly 300 mg SQ
- Treatment of Stage 1 (ambulatory) or 2 (amb w/ assistance) FAP
- Phase 3 randomized 2:1, 172 pts
- NIS 10-130, TTR mutation, path evidence of amyloid
- Exclude NYHA class III or higher
- Approved in US, Europe, Canada, Japan
Inotersen

- Improvement in modified NIS+7 (mNIS+7) and Norfolk Quality of Life – Diabetic Neuropathy questionnaire total score

- Effect as early as 8 months and sustained at 15 months
Inotersen

• Safety concerns
 - Thrombocytopenia
 - Glomerulonephritis

• REMS program for enhanced monitoring of platelets, renal function and liver function

• Open label extension (104 wk)
 - Improvement in NIS+7 and QOL
 - No new safety concerns

<table>
<thead>
<tr>
<th>Event</th>
<th>Placebo (n=60)</th>
<th>Inotersen (n=112)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Event</td>
<td>no. of patients (%)</td>
<td></td>
</tr>
<tr>
<td>Any adverse event</td>
<td>60 (100)</td>
<td>111 (99)</td>
</tr>
<tr>
<td>Event related to trial regimen†</td>
<td>23 (38)</td>
<td>87 (78)</td>
</tr>
<tr>
<td>Any serious adverse event</td>
<td>13 (22)</td>
<td>36 (32)</td>
</tr>
<tr>
<td>Event related to trial regimen†</td>
<td>1 (2)</td>
<td>8 (7)</td>
</tr>
<tr>
<td>Glomerulonephritis</td>
<td>0</td>
<td>3 (3)‡</td>
</tr>
<tr>
<td>Thrombocytopenia</td>
<td>0</td>
<td>2 (2)</td>
</tr>
<tr>
<td>Deep-vein thrombosis</td>
<td>1 (2)</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Intracranial hemorrhage</td>
<td>0</td>
<td>1 (<1)§</td>
</tr>
<tr>
<td>Tubulointerstitial nephritis</td>
<td>0</td>
<td>1 (<1)¶</td>
</tr>
<tr>
<td>Pulmonary embolism</td>
<td>0</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Embolic stroke</td>
<td>0</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Myelopathy</td>
<td>0</td>
<td>1 (<1)</td>
</tr>
<tr>
<td>Death</td>
<td>0</td>
<td>5 (4)</td>
</tr>
</tbody>
</table>

Patisiran

- 0.3 mg/kg IV q 3 weeks
- Treatment of Stage 1 or 2 FAP
- Phase 3 randomized 2:1, 225 pts
- NIS 5-130, PND ≤ IIIb, TTR mutation
- Exclude NYHA class III or higher
- Approved in US and Europe

Adams D et al; NEJM, 2018
Pinto MV et al; Arq Neuropsiquiatr, 2018
Patisiran

- Improvement in modified NIS+7 (mNIS+7) and Norfolk Quality of Life – Diabetic Neuropathy questionnaire total score

- Effect as early as 9 months for NIS

- Secondary endpoint showed improvement including 10-meter mBMI, Composite Autonomic Symptom Score 31

Patisiran

Well tolerated with infusion related reactions that rarely interrupted treatment

<table>
<thead>
<tr>
<th>Safety and Side Effects</th>
<th>Placebo (n=77) no. of patients (%)</th>
<th>Patisiran (n=148) no. of patients (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Any adverse event</td>
<td>75 (97)</td>
<td>143 (97)</td>
</tr>
<tr>
<td>Adverse events occurring in ≥105 of patients in either group</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diarrhea</td>
<td>29 (38)</td>
<td>55 (37)</td>
</tr>
<tr>
<td>Edema, peripheral</td>
<td>17 (22)</td>
<td>44 (30)</td>
</tr>
<tr>
<td>Fall</td>
<td>22 (29)</td>
<td>25 (17)</td>
</tr>
<tr>
<td>Nausea</td>
<td>16 (21)</td>
<td>22 (15)</td>
</tr>
<tr>
<td>Infusion-related reaction</td>
<td>7 (9)</td>
<td>28 (19)</td>
</tr>
<tr>
<td>Constipation</td>
<td>13 (17)</td>
<td>22 (15)</td>
</tr>
<tr>
<td>Urinary tract infection</td>
<td>14 (18)</td>
<td>19 (13)</td>
</tr>
<tr>
<td>Dizziness</td>
<td>11 (14)</td>
<td>19 (13)</td>
</tr>
<tr>
<td>Fatigue</td>
<td>8 (10)</td>
<td>18 (12)</td>
</tr>
<tr>
<td>Headache</td>
<td>9 (12)</td>
<td>16 (11)</td>
</tr>
<tr>
<td>Cough</td>
<td>9 (12)</td>
<td>15 (10)</td>
</tr>
<tr>
<td>Vomiting</td>
<td>8 (10)</td>
<td>15 (10)</td>
</tr>
<tr>
<td>Asthenia</td>
<td>9 (12)</td>
<td>14 (9)</td>
</tr>
<tr>
<td>Insomnia</td>
<td>7 (9)</td>
<td>15 (10)</td>
</tr>
<tr>
<td>Nasopharyngitis</td>
<td>6 (8)</td>
<td>15 (10)</td>
</tr>
<tr>
<td>Pain in extremity</td>
<td>8 (10)</td>
<td>10 (7)</td>
</tr>
<tr>
<td>Muscular weakness</td>
<td>11 (14)</td>
<td>5 (3)</td>
</tr>
<tr>
<td>Anemia</td>
<td>8 (10)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Syncope</td>
<td>8 (10)</td>
<td>3 (2)</td>
</tr>
<tr>
<td>Adverse event leading to discontinuation of the trial regimen</td>
<td>11 (14)</td>
<td>7 (5)</td>
</tr>
<tr>
<td>Adverse event leading to withdrawal from the trial</td>
<td>9 (12)</td>
<td>7 (5)</td>
</tr>
<tr>
<td>Death</td>
<td>6 (8)</td>
<td>7 (5)</td>
</tr>
<tr>
<td>Any serious adverse event</td>
<td>31 (40)</td>
<td>54 (36)</td>
</tr>
<tr>
<td>Any serious adverse event</td>
<td>28 (36)</td>
<td>42 (28)</td>
</tr>
</tbody>
</table>
Clinical Trials in Peripheral Neuropathy

Guillain-Barre Syndrome
• Rationale: Despite IVIG and PLEX improving prognosis and reducing disability, ~20% of treated patients still have some disability at 6 months

• Eculizumab targets the complement pathway (monoclonal Ab to C5)
 o Prior studies suggest pivotal in nerve damage especially when associated with GM1 or GD1a antibodies (30-40% of GBS patients)
 o Animal models shown to be protective against neuropathy

Misawa et al., Lancet Neurology 17:2018
Nobile-Orazio, Lancet Neurology 17:2018
Eculizumab in GBS

- 24 week multicenter, double-blind, placebo-controlled phase II trial in Japan

- 2:1 IVIG plus eculizumab or placebo
 - 1/wk for 4 weeks (before or during IVIG)

- Primary outcomes
 - Efficacy (proportion of patients with restored ability to walk independently (functional grade ≤ 2)
 - Safety
Eculizumab in GBS

- 61% in Eculizumab and 45% in placebo reached functional grade ≤ 2 at week 4 (didn’t meet the 50% threshold – 42%)
- 3 SAE
 - Eculizumab – anaphylaxis
 - Eculizumab – ICH and brain abscess (HTN, direct oral anticoagulant)
 - Placebo - depression

Limitations: small number and no direct comparison to placebo
Historical control group was less severe
Dose finding, endpoints, time to assess effect (longer outcome)

Misawa et al, Lancet Neurology 17:2018
Nobile-Orazio, Lancet Neurology 17:2018
Clinical Trials in Peripheral Neuropathy

CIDP
• Rationale: Because of side-effects, expense and limited effectiveness of first line CIDP treatments, alternative immunomodulatory agents are often used despite the lack of formal evidence of efficacy

• Fingolimod, a sphingosine-1-phosphate receptor agonist, retaining T-lymphocytes in secondary lymphoid organs → depleting circulating T cells

• Approved for RRMS
Fingolimid for CIDP

- Double-blind, international, randomized, placebo-controlled, parallel-group, event driven study

- 1:1 fingolimod versus placebo
 - IVIG stopped day before fingolimod or placebo
 - Corticosteroids tapered off over 8 weeks prior

- Primary endpoint: time to first confirmed worsening (≥ 1 point on the INCAT disability scale)

Hughes et al, Lancet Neurology 17:2018
Fingolimid for CIDP

- 54 fingolimid (41 IVIG, 13 corticosteroids),
- 52 placebo (41 IVIG, 11 corticosteroids)
- 44 worsening events – stopped for futility
 - Survival estimate of proportion free from worsening 42% in fingolimid and 43% placebo
- 40% of participants in placebo were able to stop treatment without relapse
- SAE 9 (17%) fingolimid vs 4 (8%) placebo
 - Headache, HTN, extremity pain

Limitations: 60% in both groups had no worsening in 6 months before trial
IVIG was abruptly stopped, corticosteroids were tapered - ? effect
Dose finding, endpoints, time to assess effect (longer outcome)
Subcutaneous immunoglobulin for maintenance treatment in chronic inflammatory demyelinating polyneuropathy (PATH): a randomised, double-blind, placebo-controlled, phase 3 trial

Ivo N van Schaik, Vera Bril, Nan van Geloven, Hans-Peter Hartung, Richard A Lewis, Gem Sobue, John-Philip Lawo, Michaela Praus, Orel Mielke, Billie L Deum, David R Cornblath, Inqenar SJ Merkies, on behalf of the PATH study group*

• Rationale: No evidence for SCIg showing efficacy in balancing immune dysregulation in autoimmune diseases

• SCIg has shown efficacy in primary immunodeficiency syndromes

Van Schaik et al, Lancet Neurology 17:2018
SClG for CIDP maintenance

• International, randomized, double-blind, placebo-controlled study
• 1:1:1 0.2 g/kg, 0.4 g/kg SClG weekly versus placebo for maintenance treatment for 24 weeks I
• CIDP patients responding to IVIG
• Primary endpoint: proportion of patients with a CIDP relapse or withdrew for any other reason
SQIg for CIDP maintenance

- 172 patients (58 high dose, 57 low dose, 57 placebo)
- 62 (36%) had a CIDP relapse
 - 32 (56%) in placebo
 - 19 (33%) in low-dose
 - 11 (19%) in high-dose

<table>
<thead>
<tr>
<th></th>
<th>Placebo</th>
<th>Low-dose SQIg</th>
<th>High-dose SQIg</th>
<th>Overall p-value*</th>
<th>Low-dose SQIg vs placebo</th>
<th>High-dose SQIg vs placebo</th>
<th>High-dose SQIg vs low-dose SQIg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Primary outcome</td>
<td>63.2%</td>
<td>39.0%</td>
<td>33.7%</td>
<td>0.0002</td>
<td>0.49 (0.29–0.84)</td>
<td>0.38 (0.22–0.67)</td>
<td>0.80 (0.43–1.49)</td>
</tr>
<tr>
<td></td>
<td>(50.9–75.4)</td>
<td>(27.7–53.1)</td>
<td>(22.8–47.8)</td>
<td></td>
<td>0.007</td>
<td>0.005</td>
<td>0.48</td>
</tr>
<tr>
<td>Relapse</td>
<td>58.8%</td>
<td>35.0%</td>
<td>22.4%</td>
<td><0.0001</td>
<td>0.48 (0.27–0.85)</td>
<td>0.25 (0.12–0.49)</td>
<td>0.53 (0.25–1.12)</td>
</tr>
<tr>
<td></td>
<td>(46.1–72.0)</td>
<td>(23.9–49.3)</td>
<td>(12.9–37.2)</td>
<td></td>
<td>0.009</td>
<td><0.0001</td>
<td>0.09</td>
</tr>
</tbody>
</table>

Data in parentheses are 95% CIs. Data are Kaplan-Meier estimates. All tests are one-sided, with significance defined at a p value of less than 0.025. SQIg = subcutaneous immunoglobulin. *Log-rank test for trend. †Regular log-rank test.

Table 3: Probability of primary outcome or relapse at 24 weeks.
ARR was 25% in low dose vs placebo, 30% in high dose vs placebo and 6% in high dose vs low dose.

Probability of remaining relapse free was 77.6% in high-dose, 65% in low-dose, 41.2% in placebo.

NNT 2.7 HD, 4.4 LD.
SQIg for CIDP Maintenance

- SAE 11 (6 patients) – 5 (8%) SCIg vs 1 (2%) placebo
 - 20-30% had mild to moderate infusion related reactions
- 62 (90%) were treated with rescue SCIg
 - 33 (59%) required more than one induction dose (up to 4 maintenance doses)
 - 23/30 (70%) recovered – return to baseline INCAT

Limitations:
Despite the dependency test, 37% of patients on placebo did not relapse
A considerable number of patients had missing data for exploratory outcomes (preference)
No follow-up on some rescued patients

- Patients with CIDP who have stabilized with IVIg can be switched to SCIg
- 26% might relapse
- Several might withdraw due to discomfort with tubes, pumps or infusion site reactions
- Some prefer SCIg because of independence and convenience
- Good if poor venous access, cardiovascular risks or systemic IVIg-related side-effects

Van Schaik et al, Lancet Neurology 17:2018
Summary

• Many important discoveries and clinical trials in peripheral neuropathy in the last year have advanced our knowledge and treatment

• Improved our understanding of why some “CIDP” patients do not respond to standard treatment

• Gene discovery for CANVAS patients and late-onset ataxia

• Less invasive methods to diagnosis ATTRv and major advances in treatment with gene silencing

• SC Ig is an alternative maintenance therapy for CIDP patients
Share Your Feedback

• Please use the 2019 AANEM Annual Meeting app to rate this presentation and the speaker(s).

• Your feedback helps us enhance our annual meeting to ensure we are continuing to meet your needs.
• Claiming CME
• Course and Plenary Presentations

Visit: www.aanem.org/resources

Record your attendance hours after each session or do it all at once after the meeting is complete! Credit not recorded by December 15, 2019 will not be reported to ABPN and ABPMR. The AANEM will report ALL Annual Meeting attendees’ credit to ABPN and ABPMR by December, 31, 2019.